SOME PHYSICAL ASPECTS OF PHOTOINDUCED ELECTRON TRANSFER REACTIONS

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE) OF JADAVPUR UNIVERSITY

BY SHARMISTHA DUTTA CHOUDHURY

CHEMICAL SCIENCES DIVISION

SAHA INSTITUTE OF NUCLEAR PHYSICS

1/AF BIDHANNAGAR

KOLKATA 700 064

JANUARY 2006

CONTENTS

CHAPTER I: Introduction to Photoinduced Electron Trans	fer	1-68
1.1 The beginning: a historical perspective of electron trans	sfer reactions	2
1.2 Theory of electron transfer reactions		
4		
1.2.1 The classical Marcus theory		
4		
1.2.2 Quantum mechanical aspects		
10		
1.2.3 Ultrafast electron transfer: contribution of solvation and		
vibrational dynamics		12
1.2.4 Beyond the Marcus theory (Intersecting State Model)	13	
1.2.5 Distance dependence of electron transfer	15	
1.2.6 The elusive Marcus inverted region	16	
1.3 PET : Rehm Weller approach	18	
1.4 Intermediates in PET	21	
1.5 Intramolecular PET		25
1.6 PET in organized systems	26	
1.7 PET in biology	28	
1.8 Magnetic field (MF) effects on PET		32
1.8.1 S and T RIPs	33	
1.8.2 S-T intersystem crossing (ISC) and mechanism of MF effect	35	
1.8.3 The parameter $B_{1/2}$	39	
1.8.4 MF effect on PET with S precursors	42	
1.8.5 MF effect on PET with T precursors	48	
1.8.6 MF effect on PET in Biology	54	
References		56
CHAPTER II: Scope of the Thesis		69-72

CHAPTER III: Experimental Techniques

73-84

3.1 Absorption spectra		73
3.2 Fluorescence spectra	73	
3.3 Fluorescence Lifetime Measurement	73	
3.4 Measurement of MF effect on exciplex luminescence	76	
3.5 Laser flash photolysis	78	
3.6 MF effect on triplet non-fluorescent species	79	
3.7 Materials		80
3.8 Preparation of micelles and reverse micelles	82	
3.9 Preparation of small unilamellar vesicles (SUVs)		82
References		84
CHAPTER IV: A New Exciplex System Between	Phenazine and	Some
Aromatic Amines: Dependence of Nature of Comple	exation on Struct	ure of
the Amine	8	35-101
4.1 Introduction		85
4.2 Results and Discussion		87
4.3 Conclusion		99
References		100

CHAPTER V: Relation Between Structure of Participating Molecules and PET Dynamics Revealed by MF Studies

102-118	
5.1 Introduction	102
5.2 Results and Discussion	105
5.3 Conclusion	116
References	117
CHAPTER VI: Role of Solvent Geometry in PET Reactions	119-127
6.1 Introduction	119
6.2 Results and Discussion	121
6.3 Conclusion	126
References	127
CHAPTER VII: Exploring the MF Effect on PET for the	e PZ-Amine
Systems in Organized Assemblies	
128-152	
7.1 Introduction	128
7.2 Results and Discussion	131
7.2.1 MF effect in SDS micelles	131
7.2.2 MF effect in reverse micelles	140
7.2.3 MF effect in SUVs	145

7.2.4 MF effect in micelles, reverse micelles and SUVs: a comparison 148

7.3 Conclusion	150
References	151
CHAPTER VIII: PET in Some Model Biomolecules	153-178
8.1 Introduction	153
8.2 Interaction of PZ with water and DNA bases	153
8.2.1 Results and Discussion	154
8.3 Interaction of 4NQO with indole derivatives and som	e related
biomolecules	
163	
8.3.1 Results and Discussion	164
8.4 Conclusion	174
References	176
CONCLUDING REMARKS	179-180
LIST OF ABBREVIATIONS	181-183
LIST OF PUBLICATIONS	184-185