Universalities in Fixed Energy Sandpiles

Thesis Submitted for the degree of Doctor of Philosophy (Science) of the University of Calcutta

by

SOURISH BONDYOPADHYAY

Department of Physics University of Calcutta 2014

Acknowledgement

It is my pleasure to thank my supervisor Prof. Pradeep Kumar Mohanty for his sincere help and guidance throughout the period of research. He is a source of immense inspiration for me. His patience, thoughts and ideas have drastically changed my way of thinking, for which I am highly indebted to him.

I would like acknowledge Saha Institute of Nuclear Physics for providing me such a wonderful opportunity to do research in physics and special thanks to all the members of Condensed Matter Physics division.

Finally, the mental support from my parents and friends are beyond any thank and acknowledgement.

List of Publications (included in thesis)

(1) "Conserved mass models with stickiness and chipping", Sourish Bondyopadhyay and P. K. Mohanty, J. Stat. Mech. P07019 (2012).

(2) "Fixed-Energy Sandpiles Belong Generically to Directed Percolation", Mahashweta Basu, Urna Basu, Sourish Bondyopadhyay, P. K. Mohanty, and Haye Hinrichsen, Phys. Rev. Lett. 109, 015702 (2012).

(3) "Dependence of asymptotic decay exponents on initial condition and the resulting scaling violation", Sourish Bondyopadhyay, Phys. Rev. E. 88, 062125 (2013).

4

Abstract

Stochastic fixed-energy sandpiles (FES) like conserved Manna model, CTTP and similar models like CLG *etc.* were believed to be representative of an independent universality class, namely Manna class. Observations like anomalous decay behavior (undershooting; $\alpha \neq \delta$ though $\beta \approx \beta'$), scaling violation $(\alpha \neq \beta/\nu_{\parallel})$, same upper critical dimension and same mean field exponents as that DP class, *etc.*, raise a doubt on existing claims. Using natural initial condition instead of random initial condition, we have clearly shown [38] that generic FES in 1D belong to DP class.

Then, using the simple example of CLG in 1D, we have shown [41] how the initial condition (i.c.) may crucially affect the critical behavior of a system. In this model the decay exponent is $\alpha_{in} = 1/4$ for random i.c. whereas $\alpha_{in} = 1/2$ for natural i.c. and the later is in agreement with that obtained from the temporal decay of stationary state autocorrelation. The decay exponent α obtained from natural i.c. and stationary state autocorrelation are consistent with the scaling relations whereas α obtained from random i.c. shows scaling violation. Thus, natural i.c. and stationary state autocorrelation capture the universal features whereas random i.c. do not. We have shown that this kind of feature has nothing to do with the non-ergodicity and the origin of such feature is the existence of two competing time scales-(i) $\tau_{in} \sim l_{is}^2$ which is a measure of duration of persistence of the initial memory effect and (ii) $\tau \sim L^2$ which arise from the finite size effect. Different features may arise depending on how the two time scales compete.

Next, we study continuous models of absorbing phase transition (APT) and show that FES models are closely related to mass chipping models (MCM). These models undergo DP-like transitions in presence of threshold w which allows only those sites having $E_i \ge w$, to transfer mass or energy to the neighboring sites. In presence of a threshold, these models show discontinuity in the probability density for energy (or mass). We propose a method of obtaining the critical point and other critical behavior analytically. We have introduced a novel perturbation approach [57] and obtained the stationary state mass distributions for a set of general mass chipping models.

Contents

1	Inti	roducti	ion	11		
2	Absorbing State Phase Transition and Universality					
	2.1	Phase transition				
		2.1.1	Equilibrium phase transition	19		
		2.1.2	Critical exponents and scaling relations	19		
		2.1.3	Nonequilibrium phase transition	20		
	2.2	Percol	ation	21		
		2.2.1	Classification of Percolation	22		
	2.3	Unive	rsality	23		
		2.3.1	Phenomenological scaling theory	24		
		2.3.2	DP universality class	27		
		2.3.3	Critical exponents and scaling relations in DP	28		
		2.3.4	DP as reaction diffusion process	29		
	2.4	Lattic	e models for DP	29		
		2.4.1	Domany-Kinzel automaton	29		
		2.4.2	Contact process	31		
	2.5	Other	universality classes for APT	31		
3	Sandpile models					
	3.1	Self-or	rganized criticality (SOC)	33		
		3.1.1	Sandpile Models	34		
		3.1.2	Experimental realization of SOC	34		
		3.1.3	Oslo ricepile model	35		
		3.1.4	Maslov-Zhang sandpile	36		

	3.2	Connection between SOC and APT	36				
	3.3	Fixed energy sandpiles (FES) and related models	37				
		3.3.1 Manna model	37				
		3.3.2 Conserved Threshold Transfer Process (CTTP) \ldots	37				
		3.3.3 Conserved Lattice Gas (CLG)	38				
4	Ger	neric FES in 1D belongs to DP class	39				
	4.1	Why FES belongs to different universality class than DP $?$	39				
	4.2	Manna Model	41				
		4.2.1 Discrete Model	42				
		4.2.2 Continuous variant of the model	51				
	4.3	Conserved Threshold Transfer Process (CTTP)	56				
	4.4	Conserved Lattice Gas (CLG)	60				
	4.5	Discussion	62				
5	Init	ial condition dependence	65				
	5.1	Conserved Lattice Gas (CLG)	68				
	5.2	Scaling Violation and Its Resolution	69				
	5.3	Natural initial condition	70				
	5.4	Decay exponent from stationary state autocorrelation	72				
	5.5	Analytical Arguments					
	5.6	Role of non-ergodicity and conservation					
	5.7	Plausible explanation					
	5.8	Controlling the initial time scale τ_{in}					
	5.9	Origin of anomalous behavior and the remedy	80				
	5.10	Conclusion	81				
6	Relating threshold process to APT 83						
		6.0.1 Mass distribution in Chipping models	85				
	6.1	The Model	86				
		6.1.1 Perturbation approach I	87				
		6.1.2 Perturbation approach II	89				
	6.2	Asymmetric Sticky Chipping Model (ASCM)	89				
		6.2.1 Parallel Update	91				

8

		6.2.2	Random sequential update	98
	6.3	Symm	etric Sticky Chipping Model (SSCM)	105
		6.3.1	Parallel Update	106
		6.3.2	Random sequential update	109
	6.4	Summ	ary and discussion	112
7	\mathbf{Sun}	nmary]	115