QUASI-ONE-DIMENSIONAL ELECTRONIC TRANSPORT PROPERTIES OF CONDUCTING POLYMER NANOWIRES

Thesis submitted for the degree of

DOCTOR OF PHILOSOPHY (SCIENCE)

in

PHYSICS

by

ABHISAKH SARMA

Department of Physics

University of Calcutta

JULY, 2014

To my teachers

Abstract

This thesis reports the study of the Charge Density Wave (CDW) state in polypyrrole (PPy) and composite gold-polypyrrole (AuPPy) nanotubes. Here we have presented the synthesis of the both pure and composite PPy nanotubes and results of electronic transport property studies. A brief description of techniques used for characterization of these nanotubes is given. Details of electronic transport properties of these nanotubes is presented in subsequent chapters. Magneto-transport and hard x-ray photoemission spectroscopy measurement results reveal that the disorder increases but doping reduces in both PPy and AuPPy nanotubes with the decrease of nanotubes-diameter. But due to gold incorporation the disorder as well as doping reduces. The reduction of disorder and doping in the system increases the stability of CDW state in gold-incorporated nanotubes. Low temperature dielectric measurements of PPv nanotubes revel that the dielectric constant is of the order of 10^3 , which is the usual situation for a CDW state. Relaxation time for the dielectric loss peak $\tau_0(T)$, whose temperature dependence scales with low bias DC conductance, both showing Arrhenius behavior with a gap of around 3.5 meV. These are classic phenomena observed in various conventional CDW materials. We have tuned the CDW state in these PPy nanotubes by incorporating gold nanoparticles and studied its effect using dielectric spectroscopy. We have shown by x-ray scattering technique that the static value of dielectric constant in PPy nanotubes can be tuned to a colossal value by tuning the wt% of gold nanoparticles. Switching transition observed here for both types of nanotubes have been shown to be of metal-insulator type transition using PPy nanotubes by studying magnetoresistance and Zabrodskii plots.

Acknowledgement

First and foremost, I would like to convey my profound gratitude to my supervisor, Prof. Milan K. Sanyal who made it possible to flourish this thesis work on such an exciting research area of the physics of conducting polymer nanowires. I have been blessed with his proficient guidance, his inspiration and moral boosts especially during the hard times. It was 2007 September when I started working with him. I could realize his enormous effort to remove all the hurdles from our paths so that we could focus on science. Even more, it was from him that I began to pick up the instincts of a successful experimentalist: which avenues to attack first when confronted with a problem, when to abandon the path youre on and try another, and when to keep digging because the path youre on will, eventually, lead to success.

I thank Atikurda, Sirshenduda, Rupakda, Mrinalda, Santanu, Arpan, Arka, Gouranga, Arnab for their help during the lab set up and experiment. I thankful to Dr. Srihari Velega for his lots of help during correction of my thesis. I owe my parents much of what I have become. They put education as topmost priority in my life, and raised me to set high goals for myself. I dedicate this work to them to honor their love, patience and support during these years. As well as I specially thanks to my mother Alpana Sarma, my Father Subimal Sarma, my wife Falguni Sarma for there continous support which made me tension free to carry out my research work. And I thanks my son Abhijnan sarma.

Kolkata

Abhisakh

July 25, 2014

Contents

1	Intr	oducti	ion	3
	1.1	Quasi	1D: a brief introduction	3
		1.1.1	Speciality of 1D electronic systems	5
	1.2	Polym	er nanowire and quasi-1D	15
		1.2.1	Basics	15
		1.2.2	Conjugate Polymer	17
		1.2.3	Conduction carrier in conducting polymers	20
	1.3	Outlin	ne of the thesis	24
2	\mathbf{Exp}	erime	ntal	27
	2.1	Introd	uction	27
	2.2	Synthe	esis of nanowires	28
		2.2.1	Synthesis of gold-polypyrrole composite nanotube in chem-	
			ical route	29
		2.2.2	Polypyrrole nanotube & chemical route	32
	2.3	Chara	cterization	32
		2.3.1	Scanning Electron Microscopy (SEM)	32
		2.3.2	Transmission Electron Microscopy (TEM)	34
		2.3.3	Secondary Ion Mass Spectroscopy(SIMS)	38
		2.3.4	Magnetron Sputtering	40

		2.3.5	Thermal evaporator [Designed in Lab]	41
	2.4	Electr	on beam Lithography	44
		2.4.1	Types of e-beam resist	44
		2.4.2	Pattern Designing	45
		2.4.3	Connecting single polypyrrole nanotube for electronic trans-	
			port measurements	
			(RECIPE)	46
	2.5	Conne	ections of multiple nanotubes	53
	2.6	Low 7	Cemperature Measurements	54
		2.6.1	DC and AC measurement setup	55
		2.6.2	Dielectric Measurement	59
		2.6.3	Data acquisition	59
	2.7	X-ray	(Synchrotron) measurement	60
3	Cha	arge de	nsity wave state in pure and composite polypyrrole	
3	Cha	arge de otubes	ensity wave state in pure and composite polypyrrole	61
3	Cha nan 3.1	arge de otubes Introd	ensity wave state in pure and composite polypyrrole	61 61
3	Cha nan 3.1 3.2	urge de otubes Introd Hard I	ansity wave state in pure and composite polypyrrole auction	61 61
3	Cha nan 3.1 3.2	arge de otubes Introd Hard I (HAX	ensity wave state in pure and composite polypyrrole s fuction	61 61
3	Cha nan 3.1 3.2	otubes Introd Hard I (HAX 3.2.1	ensity wave state in pure and composite polypyrrole s nuction X-ray Photoemission Spectroscopy PES) EXPERIMENTAL	61 61 62 62
3	Cha nan 3.1 3.2	arge de otubes Introd Hard I (HAX 3.2.1 3.2.2	ensity wave state in pure and composite polypyrrole s uction X-ray Photoemission Spectroscopy PES) EXPERIMENTAL RESULTS & DISCUSSIONS	 61 61 62 62 64
3	Cha nan 3.1 3.2	arge de otubes Introd Hard I (HAX 3.2.1 3.2.2 Variat	ensity wave state in pure and composite polypyrrole s function X-ray Photoemission Spectroscopy PES) EXPERIMENTAL RESULTS & DISCUSSIONS ion of disorder in polypyrrole and gold incorporated polypyr-	61 61 62 62 64
3	Cha nan 3.1 3.2 3.3	otubes Introd Hard I (HAX 3.2.1 3.2.2 Variat role na	ensity wave state in pure and composite polypyrrole auction	 61 61 62 62 64 69
3	Cha nan 3.1 3.2 3.3	arge de otubes Introd Hard I (HAX 3.2.1 3.2.2 Variat role na 3.3.1	ensity wave state in pure and composite polypyrrole s uction x-ray Photoemission Spectroscopy PES) EXPERIMENTAL RESULTS & DISCUSSIONS ion of disorder in polypyrrole and gold incorporated polypyr- anotube: Results & Discussions	 61 61 62 62 64 69 72
3	Cha nan 3.1 3.2 3.3	arge de otubes Introd Hard I (HAX 3.2.1 3.2.2 Variat role na 3.3.1 Charg	ensity wave state in pure and composite polypyrrole auction	 61 62 62 64 69 72
3	Cha nan 3.1 3.2 3.3 3.3	arge de otubes Introd Hard I (HAX 3.2.1 3.2.2 Variat role na 3.3.1 Charg gold-p	ensity wave state in pure and composite polypyrrole s nuction X-ray Photoemission Spectroscopy PES) EXPERIMENTAL RESULTS & DISCUSSIONS ion of disorder in polypyrrole and gold incorporated polypyr- anotube: Results & Discussions e Density Wave (CDW) like behavior in Polypyrrole and olypyrrole nanocomposite nanotube:	 61 61 62 62 64 69 72 75

	3.5	Conclusion	90
4	Die	ectric properties of CDW state in Gold-incorporated polypy	r-
	role	nanotube	93
	4.1	Introduction	93
	4.2	Dielectric properties of Organic-Metal system:	94
	4.3	Dielectric behavior of CDW :	97
	4.4	Tuning the dielectric constant of polypyrrole nanotube using	
		gold-nanoparticle	98
		4.4.1 Micro X-ray diffraction technique	98
		4.4.2 Dielectric Measurements:	107
		4.4.3 Effect of different gold concentration on the CDW state . 1	113
	4.5	Conclusion	116
5	Die	ectric properties of CDW state in polypyrrole nanotube	119
	5.1	Introduction	119
	5.2	Dynamics of CDW state	120
	5.3	DC resistivity and Low Frequency impedance measurement 1	126
		5.3.1 Results	127
		5.3.2 Discussions & Conclusions	135
6	Met	allic behavior in Polypyrrole nanowire	137
	6.1	Experimental	139
	6.2	Results	140
		6.2.1 Resistivity measurements	140
		6.2.2 Magnetoresistance (MR)	142
	6.3	Discussions	143
	6.4	Conclusion	147

7 Summary and Outlook

149

List of Figures

1.1	Peirls instability	8
1.2	Conjugated polymer	17
1.3	Soliton	20
1.4	soliton kink	21
1.5	Soliton band structure	22
1.6	Polarons and bi-polarons	23
2.1	Schematic	29
2.2	Reaction of Chloroauric acid and pyrrole	31
2.3	Schematic of SEM	33
2.4	SEM picture of gold-ppy composite nanotube	34
2.5	Schematic of TEM	35
2.6	TEM picture of composite nanotubes where gold not visible	36
2.7	TEM picture of composite nanotube gold visible	37
2.8	SIMS of composite nanotube	38
2.9	Thermal evaporator	42
2.10	contacted single nanowire	47
2.11	Bigger electron sputtering	48
2.12	Schematic for marker and smaller electrode fabrication	49
2.13	image of the substrate after marker and electrode fabrication . $\ .$	50
2.14	Schematic for connecting single nanotube	51

2.15	contacted single nanowire $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 53$
2.16	contacted single nanowire
2.17	Insert design
2.18	IV-check for Giga-ohm
2.19	Low noise magnetoresistance measurement
3.1	HAXPES C spectra of PPy 63
3.2	HAXPES C spectra of AuPPy
3.3	HAXPES N spectra
3.4	HAXPES gold spectra
3.5	VRH and activated plot of PPy and AuPPy 71
3.6	Magnetoresistance of PPy and AuPPy
3.7	Switching different zone of PPy and AuPPy 76
3.8	Gap Zone of PPy and AuPPy 78
3.9	Temperature variation gap zone of PPy and AuPPy 79
3.10	Power law dependence PPy 80
3.11	Power law dependence of AuPPy 81
3.12	Comparison of switching for 100 nm AuPPy and PPy 83
3.13	Temperature dependence of threshold voltage and hysteresis 84
3.14	SIMS after and before switching
3.15	Different switching process
4.1	Specially designed cell for X-ray micro-diffraction 100
4.2	Different configuration XRD of AuPPy in membrane $\ldots \ldots \ldots 101$
4.3	2D image and intensity variation of XRD spot
4.4	time evolution of gold peak for 400 nm and 80 nm AuPPy nanotube 103 $$
4.5	x-ray diffraction and Williamson-Hall plot

4.6	x-ray diffraction and Williamson-Hall plot	106
4.7	Schematic for dielectric measurement connection	107
4.8	Wall thickness measurement of 200 nm and 50 nm composite $% \left({{{\rm{T}}_{{\rm{T}}}}_{{\rm{T}}}} \right)$	
	nanotube	108
4.9	Temperature dependence dielectric constant and loss of different	
	diameter nanotube	111
4.10	Frequency dependence dielectric constant, conductivity and loss	
	of 50 nm nanotube	112
4.11	Dependence of switching and dielectric constant for different	
	wt% of gold \ldots	113
4.12	Different zone in IV of 50 nm AuPPy nanotube	115
5.1	Phase diagram of 100 nm PPy nanotubes	127
5.1 5.2	Phase diagram of 100 nm PPy nanotubes	127 129
5.1 5.2 5.3	Phase diagram of 100 nm PPy nanotubes	127 129
5.1 5.2 5.3	Phase diagram of 100 nm PPy nanotubes	127 129 130
5.15.25.35.4	Phase diagram of 100 nm PPy nanotubes	127 129 130 130
 5.1 5.2 5.3 5.4 5.5 	Phase diagram of 100 nm PPy nanotubesConductance and Cole-Cole plotFrequency dependence dielectric permittivity and loss at varioustemperatureactivation energy of relaxation time and resistivityFrequency dependent dielectric constant and loss at different bias	127 129 130 130 133
 5.1 5.2 5.3 5.4 5.5 6.1 	Phase diagram of 100 nm PPy nanotubes	127 129 130 130 133 141
 5.1 5.2 5.3 5.4 5.5 6.1 6.2 	Phase diagram of 100 nm PPy nanotubes	127 129 130 130 133 141 144
 5.1 5.2 5.3 5.4 5.5 6.1 6.2 6.3 	Phase diagram of 100 nm PPy nanotubes	127 129 130 130 133 141 144 144
 5.1 5.2 5.3 5.4 5.5 6.1 6.2 6.3 6.4 	Phase diagram of 100 nm PPy nanotubes	127 129 130 130 133 141 144 144 144