KNOWLEDGE BASED PROTEIN ENGINEERING ON A CHYMOTRYPSIN INHIBITOR PROTEIN

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE) OF THE JADAVPUR UNIVERSITY

BY SUSMITA KHAMRUI

CRYSTALOGRAPHY AND MOLECULAR BIOLOGY DIVISION SAHA INSTITUTE OF NUCLEAR PHYSICS 1/AF BIDHAN NAGAR, KOLKATA- 700 064 WEST BENGAL, INDIA

2008

CONTENTS

Acknowledgements	i
Abbreviations	iii
Synopsis of the work	v

Chapter-1: Introduction

1-21

1.1	Classification of proteases			
1.1	Classification of proteases			
1.2	The serine proteases			
	1.2.1 The mechanism of action of serine proteases	4		
1.3	Protease inhibitors			
1.4	The serine protease inhibitors			
1.5	The canonical inhibitors of serine proteases			
	1.5.1 The reactive site loop of the canonical inhibitors	10		
	1.5.2 The scaffold	12		
	1.5.3 Mechanism of inhibition, in brief	14		
1.6	The Kunitz (STI) type serine protease inhibitors			
1.7	The Winged bean Chymotrypsin inhibitors			
1.8	Objectives of the present study 1			

Chapter-2: Cloning, expression and purification of the scaffold mutants 22-35

2.1	Primer designing for mutagenesis		
2.2	Site directed mutagenesis by PCR		
2.3	Cloning of N14A, N14L and N14Q		
	in pG	EM-T vector	26
2.4	Subclo	ning of N14A, N14L, N14Q	
	and N	14G in pET28a+ vector for	
	overex	pression	28
2.5	Overexpression of the mutant proteins		
2.6	Purification of the mutant proteins		
	2.6.1	Isolation from the cell lysate through	
		Ni ⁺² -NTA column	31
	2.6.2	Removal of His-tag with thrombin	33
	2.6.3	Size exclusion chromatography	
		using Sephacryl S-100	34

Chapter-3: Structural studies on the Asn14 mutants of WCI

36-57

3.1	Crystallization of N14G, N14T, N14A and N14Q		36
3.2	Data collection and processing of the WCI mutants		37
3.3	Structure solution and refinement		
	3.3.1	Refinement of the N14G mutant	40
	3.3.2	Refinement of the N14A mutant	41
	3.3.3	Refinement of the N14Q mutant	42
	3.3.4	Refinement of the N14T mutant	43

3.4	Structure analysis of the mutants and overall comparison		
	with na	ative WCI	44
	3.4.1	The N14G mutant: Loss of canonical conformation	48

	3.4.2	The N14T mutant: The effect of ß-branching at the	
		14 th position	49
	3.4.3	The N14A mutant: Retention of the canonical	
		conformation of the reactive site loop by a	
		smaller spacer	52
	3.4.4	The N14Q mutant: Retention of the canonical	
		conformation of the reactive site loop by a	
		bigger spacer	53
3.5	Concl	usions	56

Chapter-4: Inhibitory activity of the scaffold mutants 58-64

4.1	Experimental Procedures		58
	4.1.1	Assay of Chymotrypsin inhibitory activity	
		of the wild type and mutant WCI	58
	4.1.2	Limited proteolysis of the mutant inhibitors	
		by chymotrypsin	59
4.2	Results		60
	4.2.1	Residual enzymatic activity of chymotrypsin	60
	4.2.2	Limited proteolysis of inhibitors by chymotrypsin	63
4.3	Conclusions		64

Chapter-5: Role of Asn 14 as derived from the structural
and biochemical results and its validation by
data-base analysis65-73

5.1 Religation of the scissile peptide bond: role of Asn14 side chain 67

5.2	Role of the Asn residue in religation for other serine protease		
	inhibitors: a database analysis		70
Cha	pter-6:	Single mutation at P1 of a chymotrypsin	
		inhibitor changes it to a trypsin inhibitor	74-82
6.1	Exper	imental Procedures	76
	6.1.1	Site directed mutagenesis, expression and purification	76
	6.1.2	Assay of trypsin inhibitory activity	78
	6.1.3	Limited proteolysis of the loop mutants by trypsin	79
6.2	Result	ts	80
	6.2.1	Residual enzymatic activity of trypsin	
		in presence of L65R	80
	6.2.2	Limited proteolysis of the loop mutants by trypsin	81
6.2	Concl	usions	82
Cha	pter-7	Structural studies on L65R in its	
		free state and as a complex with trypsin	83-108
7.1	Form	ation of the complex between L65R and	
	bovi	ne pancreatic trypsin	83
7.2	Struct	ure determination of L65R and L65R:BPT complex	86
	7.2.1	Crystallization and data collection of L65R and	
		L65R:BPT complex	86
	7.2.2	Structure solution and refinement	88
7.3	Analyses of the structures of L65R and L65R:BPT complex 92		

7.3.1 Structure of L65R	
7.3.1.1 Reactive site geometry: comparison with	
WCI, ETI and STI	93
7.3.1.2 Concerted movement of the scaffolding	
residue Asn14	94
7.3.2 Structure of the L65R:BPT complex	96
7.3.2.1 Overall structural organization of the complex	97
7.3.2.2 Mode of interactions between L65R and BPT	99
7.3.2.3 Comparison of the reactive site loop	104
Conclusions	107

7.2

References	109-127
Appendices	128-132
Appendix I	128
Appendix II	129-130
Appendix III	131-132