A Study on Growth Factor Receptor Protein Binding Protein 2 (GRB2) And APP Intracellular C-terminal Domain (AICD) Trafficking in Relation to Alzheimer's Disease Pathogenesis

Thesis Submitted for the Degree of Doctor of Philosophy (Science) of University of Calcutta, India (2010)

By

Mithu Saha

Contents

Abbreviati	on	1
Synopsis		3
Chapter 1:	General Introduction	
1.01	Alzheimer's Disease	12
1.02	Amyloid Cascade Hypotheses	12
1.03	Tau and Tangle Hypotheses	13
1.04	Dual Pathway	14
1.05	Risk Factors of AD	15
1.06	Amyloid Precursor Protein (APP)	15
1.07	Proteolytic Processing of APP	16
1	.07.01 α-secretase Processing	16
1	.07.02 β- secretase Processing	17
1	.07.03 γ- secretase Processing	18
1.08	Different C-terminal fragments (CTFs) of APP and their neurotoxicity	19
1.09	Cellular Roles of AICD	21
1	.09.01 Transcriptional transactivation by Fe65 family and similar	
	adaptor proteins.	21
	1.09.01.01 regulation of APP dependent transcription complexes	23
1	.09.02 Transcriptional transactivation by JIP1 (c-jun N-terminal	
	Kinase interacting protein)	24
1	.09.03 Induction of apoptosis by AICD	24
	1.09.03.01 Role of JIP	24
	1.09.03.02 Role of SET and APP-BP1	25
	1.09.03.03 Role of G ₀	25
1	.09.04 AICD mediated increase in A β production	25
	1.09.04.01 Role of mDab1	25
	1.09.04.02 Role of Caveolin-3	26
1	.09.05 AICD mediated decrease in Aβ production	26

1.09.05.01 Role of the X11 family of adaptor protein	26
1.09.05.02 Role of sorLA/LR11	27
1.09.05.03 Role of LRP	28
1.09.06 Effect of AICD on intracellular transport of APP	
1.09.06.01 Role of PAT1	28
1.09.07 Phosphorylation of AICD and cell signaling	29
1.09.07.01 Signaling of AICD through ShcA and Grb2	29
1.10 The AICD interactome	31
1.11 Axonal transport of APP	33
1.12 Intracellular trafficking in Alzheimer's disease	34
1.12.01 Site of amyloidogenic cleavage of APP in the endocytic pathway	34
1.12.02 The release of A β via exosomal pathway	35
1.12.03 Amyloid precursor protein sorting and processing: Transmitters,	
Hormones and Protein phosphorylation mechanisms	36
1.13 Tau and intracellular transport in neurons	37
1.14 Endosomal-Lysosomal pathway and Autophagy in Alzheimer's disease	38
1.14.01 APP processing in the endosomal-lysosomal pathway	38
1.14.02 Autophagy-a new APP processing pathway	39
1.14.03 APP processing in the autophagy pathway	40
1.14.04 Autophagy dysfunction in Alzheimer's disease	41
1.15 Role of Grb2 in endocytosis and intracellular signal transduction	42
1.16 Objective of the thesis	43
References	44
Chapter 2: Materials and Methods	
2.01 Mammalian cells, Bacterial strains and Plasmids	62
2.01.01 Mammalian Cells	62
2.01.02 Bacterial Strains	62
2.02 PCR cloning system	
2.02.01 TA vector	62
2.02.02 Mammalian expression vectors	62

	2.02.03 Si RNA cloning and expression vector	63
	2.02.04 Human Brain plasmid cDNA library	63
2.03	Gene cloning	
	2.03.01 Primer designing and PCR	64
	2.03.02 Restriction Enzyme Digestion	64
	2.03.03 Ligation	64
	2.03.04 Preparation of chemically (CaCl ₂) competent cells and	
	Transformation	64
	2.03.05 Identification of clones and characterization	65
	2.03.06 PCR product cloning in pTZ57R/T vector	68
2.04	Cloning of AICD into mammalian expression vector	68
2.05	Cloning of Grb2 and its different domain into mammalian	
	expression vector	69
2.06	Cloning of lc3 into mammalian expression vector	69
2.07	Site directed mutagenesis	69
2.08	Cell culture and transfections	71
2.09	MTT assay	71
2.10	Protein Extraction from Mammalian Cells	72
2.11	Western Blot	72
2.12	Co-immunoprecipitation	74
2.13	Microscopy and Live cell imaging	75
2.14	Electron microscopy	75
2.15	Staining of nucleus	75
2.16	Immunocytochemistry	76
2.17	Exosome Isolation	76
2.18	Preparation of concentrated medium	76
2.19	RNA Isolation and first strand coding DNA (cDNA) preparation	77
2.20	Gene expression study by Real Time PCR	77
2.21	RNA Interference	78
2.22	Procedures for Electrophoresis	
	2.22.01 Agarose gel electrophoresis	79

2.22.02 Polyacrylamide Denaturing gel electrophoresis	79
2.23 Lysosomal enzyme activity assay	80
2.24 Autophagy methods	
2.24 .01 Assessment of autophagy by LC3-II levels	80
2.24.02 Autophagy inducers and inhibitors	80
2.25 Data analysis	81
References	81

Chapter 3: Interaction of AICD and Grb2 and its effect at cellular level

3.01	1 Prologue	82
3.02	2 Results	
	3.02.01 AICD and Grb2 interact inside cellular vesicles	82
	3.02.02 Grb2-DsRed containing vesicles at different planes of the cell	87
	3.02.03 Vesicles containing Grb2-DsRed are characterized as late	
	endosomal vesicles	88
	3.02.04 Grb2-DsRed vesicles are reconfirmed as late endosoms by a	
	second late endosomal marker	88
	3.02.05 Co-localization of Grb2-DsRed with endogenous APP and/or AICD	91
	3.02.06 Grb2 grabs AICD for vesicularization	93
	3.02.07 Decrease in the exosomal release of APP in Grb2-DsRed	
	transfected cells	93
	3.02.08 Increase in the endogenous APP and AICD levels in Grb2-DsRed	
	transfected cells	95
	3.02.09 Gradual increase in the cellular APP level by increasing	
	concentration of Grb2	97
	3.02.10 Expression of endogenous APP remains unchanged in	
	Grb2-DsRed transfected cells versus control cells	98
	3.02.10 Decrease in the level of secreted APP in the medium of	
	Grb2-DsRed transfected cells	99
	3.02.11 Knockdown of Grb2	100
	3.02.12 Decrease in the level of APP in Grb2 knock down cells and	

	its reversion by overexpression of Grb2-DsRed	101
3	.02.13 Gsk3β expression is increased by overexpression of AICD-CFP and	is
	decreased by simultaneous overexpression of AICD-CFP+Grb2-DsRed	103
3.03	Analysia, Discussion and Conclusion	104
Refer	ences	108

Chapter 4: Role of different domains of Grb2 in APP trafficking

4.01 Prologue	111
4.02 Results	
4.02.01 Different domains of Grb2 show differential vesicularization in	
Neuro 2A cells	111
4.02.02 C-SH3-SH2 domain localizes in early endosomes and N-SH3-SH2	
domain localizes in to both early and late endosomes	113
4.02.03 Differential lolocalization of different domains of Grb2 with	
overexpressed AICD	115
4.02.04 Colocalization of different domains of Grb2 with endogenous	
APP inside the cell	115
4.02.05 Endogenous concentration and exogenous release of APP alter	
differentially by different domains of Grb2	118
4.02.06 Influence of different domains of Grb2 upon transcriptional	
activation of Gsk3β by AICD	119
4.02.07 Mutational analysis of both N-terminal and C-terminal SH3	
domains of Grb2 delineates the amino acid residues involved	
in the vesicularization process	120
4.03 Analysis, Discussion and Conclusion	122
References	124

Chapter 5: Downstream consequences of AICD-Grb2 interaction in the cell

5.01	Prologue	127
5.02	Results	

5.02.01 Modulation of ERK activation by overexpression of	
AICD and Grb2	127
5.02.02 Co-localization of AICD, Grb2 and autophagy marker LC3	128
5.02.03 Induction of autophagy by Grb2 overexpression	131
5.02.04 mTOR activation in different condition	132
5.02.05 Effect of autophagy inducers and inhibitors on	
Grb2-DsRed vesicles	133
5.02.06 Increased lysosomal enzyme activity in Grb2-DsRed	
transfected cells	135
5.03 Analysis, Discussion and Conclusion	136
References	138

Chapter 6: Summary and Conclusions

140