

APPLICATION OF BRUECKNER-GOLDSTONE MANY-BODY PERTURBATION THEORY TO ATOMIC PROPERTIES OF LITHIUM

bу

Edward Shih-Tou Chang

A dissertation submitted in partial satisfaction of the requirements of a graduate program in Physics for the degree of Doctor of Philosophy

June, 1967

University of California, Riverside

ABSTRACT OF THE DISSERTATION

Application of Brueckner-Goldstone

Many-Body Perturbation Theory to

Atomic Properties of Lithium

bу

Edward Shih-Tou Chang

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 1967
Professor Robert T. Pu, Chairman

The Brueckner-Goldstone Many-Body Perturbation Theory has been applied to the study of various properties of the lithium atom. These include the hyperfine coupling constant, the correlation energy, the dipole polarizability and shielding factor. The calculation of these atomic properties enables us to test the goodness of the lithium wave function, obtained in this approach, in different regions of the atom. The same set of basis states is used for all four properties, so that the calculation of additional properties requires little extra effort. Associated with this method is the utilization of Feynman-type diagrams, which are interpreted to represent various physical effects such as exchange

polarization, correlation, etc. This in turn facilitates comparisons and evaluations of other methods. The calculation of the hyperfine coupling constant utilizes additional attractive features of this method: the wave function is shown to be an eigenfunction of S^2 to each order of the perturbation; also, formal cancellation of diagrams may be made prior to the calculation. The result, 2.887 a.u., is in close agreement with the experimental value of 2.9096 a.u. The total energy, calculated to be -7.478 a.u., is also in good agreement with the experimental value of -7.47807 a.u. The calculated dipole polarizability is 24.85 Å, while the most recent experimental value is 22±2 Å. An absolute check on the perturbed wave function is provided by the calculation of the dipole shielding factor, whose theoretical value is exactly one. Our calculation yields an excellent result of .958 for this sensitive test. Rapidity of the convergence of the perturbation series is inferred from the fact that accurate results are obtained from the wave function calculated only to the second order.

TABLE OF CONTENTS

CHA	PTER		PAGE	
1.	Introduction			
	a.	Critique of previous calculations	1	
	b.	Introduction to the Brueckner-Goldstone		
		method	6	
	с.	Purpose of dissertation	8	
	d.	Survey of succeeding chapters	10	
2.	Form	al Brueckner-Goldstone theory		
	a.	Review of the Brueckner-Goldstone theory	12	
	b .	Expectation value of an operator	20	
3.	Appl	ication of the BG theory to the Lithium atom	· . * ·	
	a.	Choice of the single-particle potential	24	
	b.	Calculation of the wave function	28	
	с.	Eigenfunction of S ²	31	
4.	The	hyperfine coupling constant		
	a.	Discussion of the experimental value	35	
	b.	Calculation of normalization diagrams	36	
	c.	Calculation of hfs diagrams	37	
	d.	Results	55	
5.	The	energy		
	a.	Discussion of the experimental energy	59	
	b.	Calculation of energy diagram	. 60	
	c.	Results	69	
	d.	Discussion of the wave function in view of the	÷	
		results for the hfs and the energy	71	

TABLE OF CONTENTS (con.)

CHAI	PTER	P	AGE
6.	Prope	erties in an external electric field	· ·
	a.	Definitions and introductory remarks	77
	b.	The Hartree-Fock perturbation methods	82
	c.	Analysis of the HF methods in terms of the	
		present theory	87
	d.	Calculation of the dipole polarizability	94
	e.	Calculation of the dipole shielding factor	101
	f.	Summary of results	106
7.	Concl	luding remarks	107
BIBI	JIOGR <i>I</i>	АРНҮ	110
APPE	ENDIX	A	114
APPE	ENDIX	В	136
APPE	ENDIX	C	151
	1117 T 11		