LECTURE - 2

A Reminder of the Relevant Nuclear Reaction Theory Breakup reactions: $\quad \mathrm{a}+\mathrm{A} \rightarrow \mathrm{b}+\mathrm{c}+\mathrm{A}$ at least a 3-body problem

Mechanism of breakup reactions (Elastic Breakup)

Spectator participant picture
$\mathbf{T}_{\mathrm{fi}}{ }^{(+)}($DWBA $)=<\chi^{(-)}\left(\mathbf{q}_{\mathbf{c}}, \mathbf{r}_{\mathrm{cA}}\right) \chi^{(-)}\left(\mathbf{q}_{\mathrm{b}}, \mathbf{r}_{\mathrm{bA}}\right)\left|\mathbf{V}_{\mathrm{bc}}\right| \chi^{(+)}\left(\mathbf{q}_{\mathrm{a}}, \mathbf{r}_{\mathrm{a} A}\right) \phi_{\mathrm{a}}\left(\mathbf{r}_{\mathrm{b}} \mathbf{c}\right)>$

Mechanism of Breakup reactions

Sequential Breakup picture

Different approximation for the Final state

$\left.\mathrm{T}_{\mathrm{fi}}^{(-)}(\mathrm{DWBA})=<\chi^{(-)}\left(\mathrm{Q}_{\mathrm{f}}, \mathrm{r}_{\mathrm{aA}}\right) \phi^{(-)}\left(\mathrm{q}_{\mathrm{f}}, \mathrm{r}_{\mathrm{bx}}\right)\left|\mathbf{V}_{\mathrm{xA}}+\mathbf{V}_{\mathrm{bA}}\right| \phi_{\mathrm{a}}\left(\mathrm{r}_{\mathrm{bx}}\right) \chi^{(+)}\left(\mathbf{q}_{\mathrm{a}}, \mathrm{r}_{\mathrm{aA}}\right)\right\rangle$
Numerical computations are relatively simpler
More suitable for astrophysically interesting radiative fusion reactions.
No nuclear interactions \Rightarrow Coulomb excitation of the projectile a
Semi-classical counterpart \Rightarrow Alder-Winther theory of Coulomb Excitation
CDCC method \Rightarrow relative and cm motion of the fragments are not independent

Theory of Coulomb dissociation as applied to radiative fusion

Radiative capture cross sections are related to photo-disintegration

$$
\begin{gathered}
\sigma(\mathbf{a}+\gamma \rightarrow \mathbf{b}+\mathbf{c})=\left[\left(2 \mathrm{j}_{\mathrm{b}}+1\right)\left(2 \mathbf{j}_{\mathrm{c}}+1\right) / 2\left(2 \mathrm{j}_{\mathrm{a}}+1\right)\right]\left(\mathbf{k}_{\mathrm{CM}}^{2} / \mathbf{k}_{\gamma}^{2}\right) \sigma(\mathbf{b}+\mathbf{c} \rightarrow \mathbf{a}+\gamma) \\
\sigma(\mathbf{b}+\mathbf{c} \rightarrow \mathbf{a}+\gamma)=\mathbf{S}(\mathbf{E}) \mathbf{E} \exp (-2 \pi \eta)
\end{gathered}
$$

$$
\sigma(\mathbf{a}+\gamma \rightarrow \mathbf{b}+\mathbf{c})=\left[\left(2 \mathrm{j}_{\mathrm{b}}+1\right)\left(2 \mathrm{j}_{\mathrm{c}}+1\right) / 2\left(2 \mathrm{j}_{\mathrm{a}}+1\right)\right]\left(\mathrm{k}_{\mathrm{CM}}{ }^{2} / \mathbf{k}_{\gamma}{ }^{2}\right) \mathbf{S}(\mathbf{E}) \mathbf{E} \exp (-2 \pi \eta)
$$

Theory of Coulomb dissociation as applied to radiative fusion

Cross section for Coulomb excitation

$$
\mathbf{d}^{2} \sigma / \mathbf{d} \Omega \mathrm{dE} \gamma=\Sigma_{\lambda}(\mathbf{1} / \mathbf{E} \gamma)\left(\mathrm{dn}_{\pi \lambda} / \mathbf{d} \Omega\right) \sigma(\mathbf{a}+\gamma \rightarrow \mathbf{b}+\mathbf{c}) \begin{aligned}
& \pi \rightarrow \mathbf{E} \text { or } \mathbf{M} \\
& \lambda \rightarrow \mathbf{1}, \mathbf{2}, \ldots
\end{aligned}
$$

$$
=\Sigma \lambda(1 / E \gamma)\left(\mathbf{d} n_{\pi \lambda} / \mathbf{d} \Omega\right)\left[\left(2 j_{\mathrm{b}}+1\right)\left(2 \mathrm{j}_{\mathrm{c}}+1\right) / 2\left(2 \mathrm{j}_{\mathrm{a}}+1\right)\right]\left(\mathrm{k}_{\mathrm{CM}}{ }^{2} / \mathrm{k}_{\gamma}^{2}\right) \mathrm{S}(\mathrm{E}) / E \exp (-2 \pi \eta)
$$

$\left(\mathrm{dn}_{\pi \lambda} / \mathbf{d} \Omega\right)=$ equivalent photon number, purely kinematical quantity

```
d
    Measured CE cross section
```

S(E) can be extracted from the measured Coulomb excitation cross sections if Projectile excitation is dominated by single multipolarity Application of the first order theory is of sufficient accuracy

The point like projectile approximation is valid (we may have nuclei with large R)

Applications of the Coulomb Dissociation Method
Radiative fusion reaction: $\mathrm{p}+{ }^{7} \mathrm{Be} \rightarrow{ }^{8} \mathbf{B}+\gamma$
Solar neutrino problem. Determines absolute values of the calculated ${ }^{8} \mathbf{B} v$ flux.

Hammache et al. PRL 80 (1998)
A.R. Junghans et al. PRL 88 (2003)
L.T. Baby et al. PRL 90 (2003)

$$
\begin{array}{ll}
\mathrm{p}+{ }^{7} \mathrm{Be} & \mathrm{~S}_{17}=18.5 \pm 2.4 \mathrm{eV} \text { b } \quad 118-186 \mathrm{keV} \\
\mathrm{p}+{ }^{7} \mathrm{Be} & \mathrm{~S}_{17}=\mathbf{2 2 . 3} \pm \mathbf{1 . 2} \mathrm{eV} \text { b } \quad 186-1200 \mathrm{keV} \\
\mathrm{p}+{ }^{7} \mathrm{Be} & \mathrm{~S}_{17}=21.2 \pm \mathbf{0 . 7} \mathbf{e V} \text { b } \quad 302-1078 \mathrm{keV}
\end{array}
$$

${ }^{8} B$ plays a crucial role in the interpretation of SNO experiments. Unfortunately the predicted value of ${ }^{8}$ Blux normalization is quite uncertain, mainly due to the poorly known nuclear cross sections at low energies.",
V. Bargerner, D. Marfatia and K. Whisnant, PRL 88 (2002).

Improved ${ }^{8}{ }^{8}$) production rate predictions are very important for limiting the allowed neutrino mixing parameters. The astrophyical S factor for this reaction must be known to $\pm 5 \%$ in order that this uncertainty not To the dominant error in prediction of the Solar electron v flux.

Home page of late John Bahcall, http:/www.sns.ias.edu/~jnb/

Coulomb Dissociation of ${ }^{8} \mathbf{B}$

Determine the rate of the reaction $\mathrm{p}+{ }^{7} \mathrm{Be} \rightarrow{ }^{8} \mathrm{~B}+\gamma$ from the Coulomb dissociation of ${ }^{8} \mathrm{~B}$ on a heavy target.

$$
\begin{array}{r}
{ }^{8} \mathbf{B}+{ }^{208} \mathrm{~Pb} \rightarrow{ }^{8} \mathbf{B} *+{ }^{208} \mathrm{~Pb} \\
\quad] \quad \mathrm{p}+{ }^{7} \mathbf{B e}
\end{array}
$$

In the Coulomb excitation of ${ }^{8} \mathrm{~B}, \mathrm{E} 1, \mathrm{E} 2$, and M 1 multipoles can contribute.

CONTINUUM

${ }^{8} B$ may have an extended size. QM calculations.
Nuclear interactions effects

Direct Capture Cross sections for $\mathbf{p}+{ }^{7} \mathbf{B e} \rightarrow{ }^{\mathbf{8}} \mathbf{B}+\gamma$ E1 multipolarity dominates

Coulomb Dissociation of ${ }^{\mathbf{8}} \mathbf{B}$

Shyam, Thompson, PRC 59(1999)
Experiment - I: University of Notre Dame, J von Schwarzenberg, PRC53 (1996)
Reaction: ${ }^{8} \mathrm{~B}+{ }^{58} \mathrm{Ni} \rightarrow{ }^{7} \mathrm{Be}+{ }^{58} \mathrm{Ni} \quad \mathrm{E}=25.8 \mathrm{MeV}$

Semiclassical approximation is not valid for $\geq 20^{\circ}$

E2 and nuclear breakup Effects are quite large

Angular distributions of ${ }^{7} \mathbf{B e}$ and ${ }^{8} B^{*}$ are not the same

Coulomb Dissociation of ${ }^{8} \mathrm{~B}$

Experiment -II: RIKEN, Japan, T. Kikuchi et al., Phys. Lett B391(1997) Reaction: ${ }^{8} \mathrm{~B}+{ }^{208} \mathrm{~Pb} \rightarrow{ }^{8} \mathrm{~B} *\left({ }^{7} \mathrm{Be}-\mathrm{p}\right)+{ }^{208} \mathrm{~Pb}, \mathrm{E}=51.2 \mathrm{MeV} /$ nucleon
 For $\theta_{8 B^{*}} \leq 4$ deg, conditions for the applicability of the CD method are satisfied.

E1 mulipolarity dominates E2 and nuclear excitation effects are negligible. Semiclassical approximation is valid.

Data in this regime can be used for the extraction of S-factor using the SC theory.

Shyam, Thompson, PRC 59 (1999) Banerjee, Shyam, PRC 62 (2000)

Role of the Postacceleration Effects

In a reaction $\mathbf{a}+\mathbf{A} \rightarrow \mathbf{b}+\mathbf{c}+\mathbf{A}, \mathbf{Z}_{\mathrm{b}} \neq \mathbf{Z}_{\mathrm{c}}$ then $\mathrm{E}_{\mathrm{b}} \geq \mathbf{E}_{\mathrm{b}}$ (allowed by the mass ratio).
Affects the rel. energy spectrum of the fragments.
This Effect is not included in the first order theory.

Postacceleration effects not important at higher Beam Energies.
Banerjee et al., PRC 65 (2003)

Extraction of \mathbf{S}_{17} factor

${ }^{8} \mathbf{B}+{ }^{208} \mathbf{P b} \rightarrow{ }^{8} \mathbf{B} *\left({ }^{7} \mathbf{B e}-\mathrm{p}\right)+{ }^{208} \mathbf{P b}, \mathbf{E}=51.2 \mathrm{MeV} /$ nucleon

Coulomb Dissociation of ${ }^{8} \mathbf{B}$

Experiment -III: GSI, Germany, , F. Schuemann PRL 90 (2003), PRC (2006)
Reaction: ${ }^{8} \mathbf{B}+{ }^{208} \mathbf{P b} \rightarrow{ }^{8} \mathbf{B} *\left({ }^{7} \mathbf{B e}-\mathrm{p}\right)+{ }^{208} \mathbf{P b}, \mathbf{E} ; 250 \mathrm{MeV} /$ nucleon

Comparison of Results

Latest CD S_{17} results are in good agreement with those obtained in the direct (p, γ) measurements by Junghans et al.

Also slopes of the CD and direct capture measurements are in agreement

Other Applications of the Coulomb Dissociation Method

- Coulomb dissociation of ${ }^{9} \mathrm{Li}$ for determining the rate of the ${ }^{8} \mathrm{Li}(n, \gamma){ }^{9} \mathrm{Li}$ reaction

After the production of ${ }^{7} \mathbf{L i}$ (big bang nucleosynthesis) the synthesis of ${ }^{12} \mathrm{C}$ follows the chain
${ }^{7} \mathbf{L i}(n, \gamma){ }^{8} \mathbf{L i}(\alpha, n){ }^{11} \mathbf{B}(n, \gamma){ }^{12} \mathbf{B}\left(\beta^{-}\right){ }^{12} \mathbf{C}$
\downarrow
${ }^{8} \mathbf{L i}(n, \gamma){ }^{9} \mathbf{L i}(\beta-, v){ }^{9} \mathbf{B e}(p, \alpha){ }^{6} \mathbf{L i} \Rightarrow$ Reaction flows back to lighter elements

Preliminary study at Michigan State University, but detailed work is needed.

- Coulomb dissociation of ${ }^{15} \mathrm{C}$ for determining the rate of the ${ }^{14} \mathrm{C}(\mathrm{n}, \gamma){ }^{15} \mathrm{C}$ reaction

Neutrons produced in the burning zone of the 1.3 M AGB stars by the ${ }^{13} \mathrm{C}(\alpha, \mathrm{n})$ reaction can drive a CNO cycle in which an α particle is synthesized from neutrons
${ }^{14} \mathrm{C}(n, \gamma){ }^{15} \mathrm{C}\left(\beta^{-}\right){ }^{15} \mathbf{N}(n, \gamma){ }^{16} \mathbf{N}\left(\beta^{-}\right){ }^{16} \mathrm{O}(n, \alpha){ }^{14} \mathrm{C} \Rightarrow$ Controlling reaction is ${ }^{14} \mathrm{C}(n, \gamma){ }^{15} \mathrm{C}$

- Coulomb dissociation of ${ }^{23} \mathrm{Al}$ to study the stellar reaction ${ }^{22} \mathrm{Mg}(p, \gamma){ }^{23} \mathrm{Al}$
T. Gomi et al. Nucl. Phys. A758 (2005), and planned at GSI, Darmstadt

THE ANC METHOD

Direct capture reaction $b+c \rightarrow a+\gamma$

$$
\sigma \propto|M|^{2}
$$

$$
\begin{aligned}
& M=\left\langle\varphi_{a}\left(\xi_{b} \xi_{b} r_{b c}\right)\right| O\left(r_{b c}\right)\left|\varphi_{b}\left(\xi_{b}\right) \varphi_{c}\left(\xi_{c}\right) \psi_{i}\left(r_{b c}\right)\right\rangle \\
& \boldsymbol{I}_{b c}^{A}\left(r_{b c}\right)=\left\langle\varphi_{a}\left(\xi_{b} \xi_{b b} r_{b d}\right) \mid \varphi_{b}\left(\xi_{b}\right) \varphi_{c}\left(\xi_{c}\right)\right\rangle \\
&=C_{\lambda j} f_{\lambda j} Y_{\lambda m}(\Omega)
\end{aligned}
$$

$$
r_{b c} ? R_{N}, f\left(r_{b c}\right)=C_{\lambda j} W_{\lambda+1 / 2}\left(2 k r_{b c}\right) / r_{b c}
$$

At low energies $\psi_{i}\left(r_{b c}\right)$ is given by Coulamb wave fundtions. So if the reaction is peripheral then the capture cross section is datermined solely By the asymptotic normalization constant $C_{\lambda j} \Rightarrow$ ANC

Methods for the determination of ANC

-Single particle potential model for a (b+c)

Assume b+c are bound together by a potential having a Woods-Saxon form.
Its depth is adjusted to reproduce the properties of the bound state.
The corresponding single particle wave function is $\boldsymbol{u}_{\boldsymbol{\lambda} \boldsymbol{j}}$.

$$
\begin{gathered}
f\left(r_{b c}\right)=\boldsymbol{S}_{\lambda j}^{1 / 2} u_{\lambda j}\left(r_{b c}\right)=\underline{S}_{\lambda i}{ }^{1 / 2} \underline{b}_{\lambda i} W_{\lambda+1 / 2}\left(2 k r_{b c}\right) \\
\downarrow
\end{gathered}
$$

Spectroscopic factor
From the transfer reaction b (\mathbf{A}, B) a $\mathbf{d} \sigma / \mathbf{d} \Omega=\left|<\chi_{\mathrm{a}-\mathrm{B}} \phi_{\mathbf{B}} \phi_{\mathbf{a}}\right| \mathbf{V}_{\mathrm{B}-\mathrm{c}}\left|\phi_{\mathbf{A}} \phi_{\mathbf{b}} \chi_{\mathrm{b}-\mathrm{A}}>\right|^{2}$

$$
=\left|<\chi_{\mathrm{a}-\mathbf{B}} \mathbf{I}_{\mathrm{ba}} \phi_{\mathbf{B}}\right| \mathbf{V}_{\mathbf{B - c}}\left|\phi_{\mathbf{A}} \chi_{\mathrm{b}-\mathbf{A}}>\right|^{2}
$$

$\left|I_{b a}\right|^{2}=S_{\lambda j}\left|u_{\lambda j}\right|^{2}=S_{\lambda j} b_{\lambda j}\left|W_{\lambda+1 / 2}\right|^{2} \quad$ If the transfer is peripheral
χ_{s} are the distorted waves in the initial and final channels

ANC from Transfer Reactions

Conditions to be satisfied

- Transfer reaction must be peripheral
- Single step transfer mechanism must dominate
- Compound nuclear contribution should be negligible
- Optical model potentials must be known with great accuracy

Applications to $\mathbf{p}+{ }^{7} \mathbf{B e} \rightarrow{ }^{\mathbf{8}} \mathbf{B}+\gamma$ Reaction

Experiment -I, Texas A \& M group, Tribble et al. PRC 60 (1999), PRL 82 (1999)
${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Be},{ }^{8} \mathrm{~B}\right){ }^{9} \mathrm{Be},{ }^{14} \mathrm{~N}\left({ }^{7} \mathrm{Be},{ }^{8} \mathrm{~B}\right){ }^{13} \mathrm{C}$ transfer reactions with ${ }^{7} \mathrm{Be}$ beam
Elastic scattering cross section for the ${ }^{10} \mathbf{B}+{ }^{7} \mathrm{Be}$ and ${ }^{14} \mathrm{~N}+{ }^{7} \mathrm{Be}$ were also measured Peripheral nature of transfer process confirmed, but final channel OMP are unknown ANC approximation was used for both $\left({ }^{7} \mathrm{Be},{ }^{8} \mathrm{~B}\right)$ and (A, B) vertices.

$$
S_{17}=16.6 \pm 1.9 \mathrm{eV} \mathrm{~b}, \mathrm{~S}_{17}=17.8 \pm 2.8 \mathrm{eV} \mathrm{~b}
$$

