# The continuum shell model description of the ${}^{17}F(p,\gamma){}^{18}Ne$ radiative capture reaction

R. Chatterjee GANIL, Caen, France



#### I. Introduction

Motivation for the work

II. Shell Model Embedded in the Continuum

Shell Model and how to treat the continuum

The spectra of <sup>18</sup>Ne

III.  ${}^{17}F(p,\gamma){}^{18}Ne$  radiative capture

Capture from both the ground and excited states of <sup>17</sup>F

The astrophysical S-factors, reaction rate

IV. Indirect Methods in Nuclear Astrophysics



#### Explosive stellar nucleosynthesis



Nova Cygni Erupted 2/92 Left : 5/93

Right : 6/94

http://hubblesite.org

- Novae, X-ray bursts, Supernovae type 1a
- Binary system compact object (white dwarf or neutron star) and main sequence or red giant star

#### NOVA

- •Accretion of hydrogen rich material on surface of white dwarf that had C burning
- Thermonuclear runaway lots of energy
- High temperatures and short timescales

Nuclei far from stability (radioactive nuclei) are involved

# Importance of the ${}^{17}F(p,\gamma){}^{18}Ne$ radiative capture reaction



# Small ${}^{17}F(p,\gamma){}^{18}Ne$ reaction rate

- $\bullet$  favour production of  $^{15}\text{O},\,^{15}\text{N}$
- explains overabundance of <sup>15</sup>N in nova ejecta?

D.W. Bardayan *et al.* PRC **62** (2000) 055804S. Parete-Koon *et al.* ApJ **598** (2003) 1239

- Large  ${}^{17}F(p,\gamma){}^{18}Ne$  reaction rate
- could alter <sup>18</sup>F/<sup>17</sup>F abundance ratio
- breakout from the CNO cycle; subsequent routes of nucleosynthesis

# Closed quantum system

 $\rightarrow$  all nucleons are in bound orbits

# Open quantum system

#### Gamow Shell Model (GSM) : (2002)

 $\rightarrow$  complex energy plane:

bound states, resonances and complex energy scattering states

 $\rightarrow$  no restriction on the number of particles in the continuum

(N. Michel et al, 2002)

#### Continuum Shell Model (CSM): (1976)

 $\rightarrow$  shell model with the real energy continuum:

bound states, resonances and real energy scattering states

- $\rightarrow$  only one nucleon in the continuum
- $\rightarrow$  realistic applications with Shell Model

Embedded in the Continuum

(K. Bennaceur et al, 1999)

### Shell Model Embedded in the Continuum (SMEC) : The essential steps

- division of Hilbert space in different subspaces: (H.
- $Q + P + T + \ldots = I_d$ Feshbach)  $Q = [A] \blacktriangleleft$ nucleons in (quasi) bound states choice of the subspaces according  $P = [A - 1] \otimes [1]$ to the considered case  $Q + P = I_d$ nucleon(s) in continuum states  $T = [A - 2] \otimes [2]$  $H_{QP}$  coupling  $H_{PP}$  $H_{QQ}$  $H_{PP}^{eff}(E$ Open Quantum System (OOS) Closed Quantum System (CQS) •  $H_{QQ} \equiv H_{SM} \longrightarrow$  shell model effective interaction  $\longrightarrow H_{QQ}^{eff}(E) = H_{QQ} + H_{QP}G_P^+(E)H_{PQ}$ correction due to continuum coupling •  $H_{PP} \equiv H_{cc'} \longrightarrow$  coupled channel hamiltonian  $\longrightarrow H_{PP}^{eff}(E) = H_{PP} + H_{PQ}G_{Q}^{+}(E)H_{QP}$

• completeness relation:

 $\begin{array}{c} |\Phi_i\rangle \\ |\xi\rangle \end{array} \right\} \begin{array}{c} \text{Using} \quad P+Q = I_d \\ \text{continuation of} \\ \text{SM state in } P \quad : \quad |\omega_i\rangle \end{array}$ Q subspace : Solve the SM problem. Get SM eigenstates P subspace : Solve for scattering states. Get solutions

• diagonalisation of  $H_{QQ}^{eff}(E)$  the shell model basis  $|\Phi_i\rangle$  $\langle \Phi_i | H_{QQ}^{eff}(E) | \Phi_j \rangle = E_i^{SM} \delta_{ij} + \langle \Phi_i | H_{QP} G_P^{(+)}(E) H_{PQ} | \Phi_j \rangle$ 

 ${\cal H}_{QQ}^{eff}$  is hermitian below the particle emission threshold and non-hermitian above it

eigenvalues :  $\tilde{E}_i(E) - \frac{1}{2}i\tilde{\Gamma}_i(E)$ 

Above particle emission threshold  $\tilde{E}_i(E) = E, \quad \tilde{\Gamma}_i(E) = \Gamma$ 

Below particle emission threshold Ĩ

$$\tilde{E}_i(E) = E, \quad \tilde{\Gamma}_i(E) = 0$$

Total wavefunction : 
$$|\Psi\rangle = |\xi\rangle + (Q + G_P^{(+)}(E)H_{PQ})\frac{1}{E^+ - H_{QQ}^{eff}(E)}H_{QP}|\xi\rangle$$
  
non-resonant solution resonant part

Shell Model Interaction : ZBM (1969)

Zuker-Buck-McGrory, PRL 23 (1969) 983

Model Space :  ${}^{12}C$  core,  $0p_{1/2}$ ,  $0d_{5/2}$ ,  $1s_{1/2}$ 

 $3\pi$ ,  $2\nu$ : <sup>17</sup>F and  $4\pi$ ,  $2\nu$ : <sup>18</sup>Ne







Target excitation : some amount of energy of the projectile used to 'excite' the target

<u>Initial channel</u>:  $[{}^{17}\text{F} + \text{p}]{}^{J_i^{\pi_i}}$ Projectile angular momentum:  $j_a = l_a \otimes s_a$ Initial channel spin:  $J_i = j_a \otimes I_t$ Parity:  $\pi_i = \pi_{I_t} \times (-1)^{l_a}$  Final channel :  $[^{18}Ne]^{J_f^{\pi f}}$ Final channel spin parity :  $J_f^{\pi f}$  $(s_b, l_b, j_b), I_{t_b}$ final state target spinspin and angular momenta of capturednucleon (projectile)

Astrophysical S – factor

$$S(E) = E \ e^{2\pi\eta} \ \sigma(E)$$

Radiative capture cross section





$$j = l \otimes 1/2 \qquad J_f = j \otimes I_t$$

$$\pi_f = \pi_{I_t} \times (-1)^l$$

$$\boxed{l \quad j \quad I_t \quad J_f}$$

$$\boxed{0 \ (s) \quad 1/2 \quad 5/2^+ \quad 2^+}$$

$$2 \ (d) \quad 3/2 \quad 5/2 \quad 4 \quad 7/2 \quad 9/2$$

$$\boxed{2 \ (d) \quad 5/2 \quad 1/2^+ \quad 2^+}$$

$$\boxed{2 \ (d) \quad 5/2 \quad 1/2^+ \quad 2^+}$$

Negligible contribution from the excited state of <sup>17</sup>F

•ext. st. channel opens only at 490 keV.

•ext. st. coupling to 2<sup>+</sup> involves only *l* = 2 (d - state) waves (protons)



•Strong interference between  $2^+_2$ ,  $2^+_3$  eigenvalues of  $H^{eff}_{QQ}$ 

•Significant part of  $2_{3}^{+}$  resonance strength shifted into region of low energy continuum





Strong  $(2^+_{\text{cont}} \longrightarrow 2^+_1)$  M1 transition

**2**<sup>+</sup> **continuum** at low ext. energy is **strongly correlated** by the proximity of a **weakly bound**  $2^+_2$  **state** which introduces a resonant-like feature ('resonant halo') in the 2<sup>+</sup> continuum owing to its **large 'S'** – **state spec. factor.** 

The  $S_{M1}$  factor for  $2^+$   $2^+_1$  transition as a function of 'position of  $2^+_2$ 



#### ${}^{17}F(p,\gamma){}^{18}Ne$ reaction rates

Reaction rate per particle pair :



# ${}^{17}F(p,\gamma){}^{18}Ne$ reaction rates

|  |              | g.s. + ext. state of <sup>17</sup> F |                        | Couples mainly to $d - way$      |
|--|--------------|--------------------------------------|------------------------|----------------------------------|
|  |              |                                      |                        |                                  |
|  | $T(10^{9}K)$ | SMEC                                 | SMEC (g.s.)            | Bardayan et al.                  |
|  | 0.1          | $1.317 \times 10^{-9}$               | $1.317 \times 10^{-9}$ | $(2.68\pm0.38)\times10^{-9}$     |
|  | 0.2          | $2.209 \times 10^{-6}$               | $2.209 \times 10^{-6}$ | $(5.15\pm0.75) \times 10^{-6}$   |
|  | 0.3          | $7.736 \times 10^{-5}$               | $7.736 \times 10^{-5}$ | $(1.97 \pm 0.29) \times 10^{-4}$ |
|  | 0.4          | $7.458 \times 10^{-4}$               | $7.453 \times 10^{-4}$ | $(2.29\pm0.40) \times 10^{-3}$   |
|  | 0.5          | $4.124 \times 10^{-3}$               | $4.116 \times 10^{-3}$ | $(1.77\pm0.49) \times 10^{-2}$   |
|  | 0.6          | $1.646 \times 10^{-2}$               | $1.640 \times 10^{-2}$ | $(9.29 \pm 3.28) \times 10^{-1}$ |
|  | 0.7          | $5.023 \times 10^{-2}$               | $5.000 \times 10^{-2}$ | $(3.32\pm1.30) \times 10^{-1}$   |
|  | 0.8          | $1.227 \times 10^{-1}$               | $1.221 \times 10^{-1}$ | $(8.80\pm3.61)\times10^{-1}$     |
|  | 0.9          | $2.516 \times 10^{-1}$               | $2.503 \times 10^{-1}$ | $(1.88\pm0.78) \times 10^{0}$    |
|  | 1.0          | $4.516 \times 10^{-1}$               | $4.491 \times 10^{-1}$ | $(3.43\pm1.44) \times 10^0$      |
|  | 1.5          | $2.643 \times 10^{0}$                | $2.629 \times 10^{0}$  | $(1.97\pm0.78) \times 10^1$      |
|  | 2.0          | $6.185 \times 10^{0}$                | $6.155 \times 10^{0}$  | $(4.62 \pm 1.64) \times 10^1$    |

At low temperatures Gamow window spans low energies < 0.4 MeV

Ext. st. channel opens only at 495 keV

inter d  $\overline{}$ ve protons

D.W. Bardayan et al. PRC 62 (2000) 055804

#### Scenarios in Nova nucleosynthesis based on rates of Bardayan et al.

1-D hydrodynamical calculations for outbursts on white dwarfs.

(S. Parete-Koon et al. ApJ 598 (2003) 1239)





ORNL : D.W. Bardayan *et al.* PRC **62** (2000) 055804 WGT88 : M. Wiescher, *et al.* ApJ **326** (1988) 384

early surplus of <sup>18</sup>F destroyed by <sup>18</sup>F( $p,\alpha$ )<sup>15</sup>O because of high temperatures

#### Scenarios in Nova nuclosynthesis based on our reaction rate (qualitative)



Consequences of lower  ${}^{17}F(p,\gamma){}^{18}Ne$  reaction rate in Nova nucleosynthesis

- 1. Survival of <sup>18</sup>F and subsequent beta decay : 511 keV  $\gamma$ -ray from e-e<sup>+</sup> annihilation Detect by  $\gamma$ -ray astronomy ? Constraints on nova models?
- 2. More <sup>17</sup>F survives pathway to <sup>15</sup>N via <sup>17</sup>F(,e<sup>+</sup>v)<sup>17</sup>O(p, $\alpha$ )<sup>14</sup>N(p, $\gamma$ )<sup>15</sup>O(,e<sup>+</sup>v)<sup>15</sup>N Explanation for the overabundance of <sup>15</sup>N in nova ejecta ?

#### Indirect Methods in Nuclear Astrophysics. Why do we need them?



Nuclear Astrophysics :

Nuclear reaction rates at small energies are needed in many astrophysical models ( stellar nucleosynthesis, novae, supernovae ....) for various processes (pp-chains, CNO cycle,

r, p, s, rp, ..)

Novae : Temperature  $\leq 0.4$  GK  ${}^{17}F(p,\gamma){}^{18}Ne$  peak reaction rates comes at around  $E_{cm} = 400$  keV.

Direct measurements are preferable, but are often difficult.

Cross sections are small, unstable nuclei are involved, low yields...

Alternative indirect methods, depending on the type of reaction, offers a way forward.

Coulomb Dissociation Method, Asymptotic Normalization Coefficient, Trojan Horse Method.

Nucleosynthesis :

 ${}^{1}H(n,\gamma){}^{2}H(n,\gamma){}^{3}H(d,n){}^{4}He({}^{3}H,\gamma){}^{7}Li(n,\gamma){}^{8}Li$ 

 $^{8}Li(\alpha,n)^{11}B(n,\gamma)^{12}B$  .... (higher masses)

Competition between these reaction pathways

 $^{8}Li(n,\gamma)^{9}Li(\beta,\nu)^{9}Be(p,\alpha)^{6}Li$  (turns reaction flow back)

<sup>8</sup>Li( $n,\gamma$ )<sup>9</sup>Li c.s. still uncertain

Find the Coulomb dissociation c.s. of

 ${}^{9}\text{Li} \longrightarrow {}^{8}\text{Li} + n$ 

and relate back to the capture c.s.

Larger  ${}^{8}\text{Li}(n,\gamma){}^{9}\text{Lic.s.}$  could lead to almost **50%** reduction in abundance of A 12 isotopes

R.A. Malaney and W.A. Fowler, The Origin and Distribution of the Elements, World Scientific (1988) p.76

Coulomb dissociation with three charged particles in the final state : (Work in Progress) R.C., R. Shyam

Applications to the breakup of  ${}^{8}B({}^{7}Be + p)$  on heavy targets

Can relate to the  ${}^7Be(p,\gamma){}^8B$  solar capture reaction

Important for the neutrino oscillation problem

## Conclusions and Perspectives

- 1. Shell Model Embedded in the Continuum Realistic Shell Model solutions are coupled to the environment of one-particle decay channels. Recent extention to describe two nucleons in the scattering continuum and application for the description of the two-proton radioactivity.
- 3. Energy dependence of eigenfunctions (spectroscopic factors) and eigenvalues of the effective Hamiltonian and spectroscopic factors
- 5. Radiative proton capture cross section calculated from both 5/2<sup>+</sup> g.s. and 1/2<sup>+</sup> first excited state of <sup>17</sup>F using fully antisymmetrized wave functions in both initial and final channels.
- 7. Capture from the excited target state has negligible effect on the cross section in  ${}^{17}F(p,\gamma)$  ${}^{18}Ne$ . This effect may be more important in :  ${}^{26}Al(p,\gamma){}^{27}Si$ ,  ${}^{22}Na(p,\gamma){}^{23}Mg$  ....
- 9. Lower  ${}^{17}F(p,\gamma){}^{18}Ne$  reaction rate could be an explanation for the over abundance of  ${}^{15}N$  in nova ejecta ?
- 11. Indirect methods in Nuclear Astrophysics, like the Coulomb dissociation method..., offers a way forward when the direct method is too difficult or is not feasible.