Nuclear Astrophysics - III

Carl Brune

School-cum-Workshop on Low-Energy Nuclear Astrophysics, Saha Institute of Nuclear Physics, Kolkata, India

20 January 2006

Plan for Today's Lecture

Some things we are doing presently with our low-energy stable beam accelerator at Ohio University:

■ (³He,n) spectroscopy for nova nucleosynthesis

Level densities

Spectroscopic studies for ${}^{12}C(\alpha,\gamma){}^{16}O$

Edwards Accelerator Laboratory

4.5-MV tandem accelerator
p, d, ^{3,4}He, heavy ion beams
30 m time-of-flight tunnel

Edwards Accelerator Laboratory

The Origin of ²⁶Al in our Galaxy

- source of 1809-keV gamma rays
- half-life = 0.73 million years

Novae are likely a significant source, via the sequence ${}^{24}Mg(p,\gamma){}^{25}Al(\beta^+){}^{25}Mg(p,\gamma){}^{26}Al:$

- Evidence from pre-solar grains
- Predicted by models (ONe novae)

²⁶Al is not produced if this sequence occurs: ²⁴Mg(p, γ)²⁵Al(p, γ)²⁶Si(β ⁺)^{26m}Al(β ⁺)²⁶Mg

1809-keV flux distribution (COMPTEL on CGRO)

Neutron Time-of-Flight Technique

 $^{24}Mg + {}^{3}He \Rightarrow {}^{26}Si(*) + n$

- time of flight \Rightarrow neutron energy
- kinematics \Rightarrow E_x in ²⁶Si
- $\Delta t \approx 2 \text{ ns}$
- long flight path, low E_n desirable
- NE-213 scintillator \Rightarrow neutron / gamma discrimination

Excellent energy resolution achievable !

Neutron Energy Spectra (Y. Parpottas)

full spectra

²⁴Mg(³He,n)²⁶Si(*)

Key Result

Mirror nucleus leads us to expect 3^+ and 0^+ in this region.

Implications for ${}^{25}AI(p,\gamma){}^{26}Si$

- Our reaction rate is a factor ~ 20 smaller at nova temperatures than previously thought.
- The J^{π} assignments should be verified.
- ²⁸Si(p,t)²⁶Si has been repeated at HRIBF to verify 0⁺ assignments.

Implications for ²⁶Al production in Novae

• Calculations using the previous reaction rate found that novae could produce up to 20% of the observed galactic ²⁶Al (Jose' et al.).

- Recent numerical studies (Iliadis et al. 2002) find less sensitivity to this reaction rate than expected.
- Other nuclear physics inputs have significant uncertainties.
- Recent data from SPI/INTEGRAL indicates other source may be more important.

Experiment: ¹⁷O(³He,*n*)¹⁹Ne

■ Pulsed 4.2-MeV ³He beam chosen to optimize efficiency and resolution

- Q value of 4.2997 MeV with respect to ¹⁹Ne ground state
- Chopped and bunched at 1.25 MHz (800 ns) pulse width 3-4 ns (FWHM)

Preliminary Results

¹⁶O(³He,n)¹⁸Ne (Y. Parpottas)

Relevant for the ${}^{17}F(p,\gamma){}^{18}Ne$ Reaction

Neutron Energy (MeV)

¹⁶O(³He,n)¹⁸Ne (Y. Parpottas)

 $\Gamma(4.527) = 17(4) \text{ keV}$

Neutron Energy (MeV)

Nuclear Reactions

Statistical (Hauser-Feshbach) Reactions

• Heavier (A>30) nuclei (except near closed shells or driplines) Need:

- Level Densities
- Transmission Functions (optical potentials or strength functions)
- Understand systematics for both stable and unstable nuclei

Breit-Wigner Formula

Resolved Resonances

- need E_x , J^{π} , partial widths
- R-matrix analysis

$$\sigma(E) = \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\pi}{k^2} \frac{\Gamma_1 \Gamma_3}{(E-E_R)^2 + \Gamma^2/4}$$

Nuclear Level Densities

Fermi Gas Form $\rho(u) \propto$

$$\frac{e^{2\sqrt{au}}}{u^{3/2}}$$

$$a = \frac{\pi^2}{6}g$$

g: single-particle state density at the Fermi level

$$u = E_x - \delta$$

 E_x is the excitation energy and δ is the shell and pairing correction

Normally Assume: (1) $a = \alpha A$

where:

 $\alpha = constant$ A = N + Z

Recent Analysis of Al-Quraishi et al. (2001,2003) investigated:

(2) $\alpha = \alpha_1 A \exp[-\beta(N-Z)^2]$ (3) $\alpha = \alpha_2 A \exp[-\gamma(Z-Z_0)^2]$ Where $Z_0 = Z$ of β -stable nucleus of mass A

Both equation (2) and equation (3) result in better fits than the normal assumption, equation (1). Additionally, equation (3) yields a better fit than equation (2).

The fitting was done for Nuclei with $20 \le A \le 110$. The nuclei used had sufficient information on the resolved levels to be used for level densities. This was also limited to both low energies and $|Z-Z_0| \le 2$.

Need More Tests of Al-Quraishi Results Energies > 3 MeV needed More nuclei with $|Z-Z_0| \ge 2$

Investigate neutron spectra from: ⁵⁸Fe(³He,n)⁶⁰Ni ⁵⁸Ni(³He,n)⁶⁰Zn ⁶⁰Zn has N =Z Thus, traditional form (Eq. 1) has level density ⁶⁰Ni \approx ⁶⁰Zn Eq. (2) has level density ⁶⁰Ni < ⁶⁰Zn Eq. (3) has level density ⁶⁰Ni > ⁶⁰Zn

We are also investigating (³He,nγ) which may allow the use of targets with natural abundance to be used.

Measurement of the level density of ⁵⁶Fe from ⁵⁵Mn(d,n)⁵⁶Fe reaction

 $\rho(E) = \rho(E)_{input} \frac{(d\sigma/dE)_{meas}}{(d\sigma/dE)_{calc}}$

Level density of ⁵⁶Fe from neutron evaporation spectra

- Level density from Oslo experiment
- Level density from ⁵⁵Mn(d,n)⁵⁶Fe experiment
- \Box Level density of discrete low-lying levels

Evaporation Spectra Measured

- ⁴⁵Sc(d,n)
- ⁵¹V(d,n)
- ⁴⁵Sc(³He,n)
- ⁵⁵Mn(d,n)
- ⁵⁸Fe: (³He,n); (³He,p); (³He,α)
- ⁵⁸Ni: (³He,n); (³He,p); (³He,α)
- ⁵⁹Co(d,n)

Future Plans

- Ohio: ⁴⁶Ti(³He,n); ⁶⁴Zn(³He,n); ⁷⁰Ge(³He,n)
- LBL: ${}^{12}C({}^{76}Kr,p/\alpha)$; ${}^{12}C({}^{76}Ge,p/\alpha)$; ${}^{12}C({}^{76}Se,p/\alpha)$

¹²C(α , γ)¹⁶O Cross Section

The Experiment

The 7.12-MeV excited state in ¹⁶O is formed via the ¹⁹F(p,α)¹⁶O reaction by bombarding targets of CaF₂ 100µg/cm² thickness, evaporated on C backings.

The energy of the proton beam was chosen at $E_p=2.0025$ MeV to maximize the relative population of the 7.12-MeV state.

Setup

Result for the 7.12 \rightarrow 6.13-MeV transition

Fit selected region to extract background and count events of interest.

Calibrated sources and GEANT simulations used to estimate detectors efficiency

Calculate $7.12 \rightarrow 6.13$ -MeV branching ratio:

$$f = \frac{N_{1MeV} / \varepsilon_{HPGe}}{0.7N_{NaI} / \varepsilon_{NaI}} = (8.3 \pm 0.4) \times 10^{-4}$$

Result for the 7.12→6.92-MeV transition

A limit for this transition can be set with a $2-\sigma$ confidence level:

$$f_{7.12\to 6.92} \le 1.2 \times 10^{-5}$$

In Summary:

- Several reactions and nuclear astrophysics scenarios have been discussed over the past week.
- Many labs in North America are working on these questions with both stable beams (OU, UNC/Duke, Yale, Texas A&M,...) and radioactive beams (ORNL, NSCL, ANL, TRIUMF,...). Obviously this is a world-wide effort.
- We look forward to new data from ground- and space-based observatories and other probes of our universe.

Rare Isotope Accelerator

Simplified Schematic Layout of the Rare Isotope Accelerator (RIA) Facility

Nuclear Astrophysics at RIA

<10 MeV beams

- p-, α -,n-induced reaction rates
- (ANC,nucleon transfer, ...)
- nuclear structure experiments

Stopped beams

- Masses
- β,βn,βp,p decays

Reaccelerated Beams

Neutron Facility

 n-capture on radioactive targets

1 MeV beams

p-, α-induced reaction rates (direct measurements)
resonant scattering

>100 MeV beams

- p-,α-,n-induced reaction rates (transfer/knockout, Coulomb breakup)
- β,βn,βp,p decays
- charge exchange reactions
- TOF mass measurements
- Nuclear structure experiments

RIA Floor Plan

47 m • 24 m

RIA Intensities

