TERRESTRIAL ⁷Be DECAY RATE AND ⁸B SOLAR NEUTRINO FLUX

Amlan Ray

Variable Energy Cyclotron Center 1/AF, Bidhannagar, Kolkata- 700064

Sun

Luminosity = 4×10^{26} Watts Mass = 2×10^{30} Kg

Ancient Question

What powers the sun?

Chemical energy (coal burning) Calculated life-time = 1500 years

Lord Kelvin: Gravitational contraction Calculated Life-time = 50 - 100 million years Life on earth much older

Modern Idea Hans Bethe

Nuclear fusion at the solar core Einstein's famous E=mc² formula

 $4 \, {}^{1}\text{H} \rightarrow {}^{4}\text{He} + \text{neutrinos} + 2e^{+} + \text{energy}$ Calculated life-time = 10 billion years

Density at solar core = 150 gm/cc Temperature = 15 - 20 million °C. Sophisticated solar model developed by John Bahcall et al.

Nuclear Reactions at the solar core

Fig (1.2) pp fusion chain reaction in the solar core and solar neutrinos produced

Davis Chlorine Experiment

•Homestake gold mine in South Dakota USA at a depth of 4200 meter water equivalent.

•615 tons cleaning fluid (CCl₄) as target material

$$v_e + {}^{37}Cl \rightarrow e^- + {}^{37}Ar$$
 Threshold energy 814 keV

•A few atoms of ³⁷Ar produced by neutrino interaction in the target were extracted every few months by purging the target with helium and added to the counting gas of a miniaturized, low background proportional counter.

(about 15 atoms out of total more than 10³⁰ atoms in the tank) •³⁷Ar is 35 days by electron capture process (half-life, $\tau_{1/2}$ = 35 days). The X-rays, Auger electrons produced subsequently were detected during counting period.

•However only 1/3 of the expected neutrinos seen.

KAMIOKANDE and its upgraded SUPERKAMIOKANDE

•This water Čherenkov detector is located in the Kamioka mine in Japan.

•About 50 kilotons of ultrapure water has been used as the Čherenkov medium. Events seen by 11200 PMTs (each 50 cm diameter).

•Interaction is via elastic neutrino-electron scattering: $v + e^- \rightarrow v' + e^-$

Sudbury Neutrino Observatory (SNO)

This imaging water Čerenkov detector is located at a depth of 6010 meter of water equivalent (6800 ft) in the Creighton Mine near Sudbury, Canada.

The target contains 1000 metric tons of ultra-pure D_2O in a 12 meter diameter spherical acrylic vessel. Vessel surrounded by very pure normal water. Events seen by 9600 PMT.

Superkamiokande and Sudbury Neutrino Observatory Measured all flavors of ⁸B solar neutrinos and found agreement with Standard Solar Model Calculations.

Recent ⁸B solar neutrino flux result from SNO

$$\phi_{NC}^{SNO} = 5.21 \pm 0.27(stat.) \pm 0.38(syst.) \times 10^6 \, cm^{-2} s^{-1}$$

SSM calculation

$$\phi_{SSM} = 5.05^{+1.01}_{-0.81} \times 10^6 \, cm^{-2} s^{-1}$$

Agreement implies neutrino oscillation Efforts going on to improve SSM calculation. A few percent level effects also being considered.

Uncertainties in ⁸B solar neutrino flux calculations

Sources of uncertainty	Uncertainty in ⁸ B neutrino flux
pp	0.040
³ He ³ He	0.021
³ He ⁴ He	0.075
⁷ Be+p	0.038
Z/X^*	0.200
Luminosity	0.028
Opacity	0.052
Age	0.006
Diffusivity	0.040

* Z/X is the heavy element to hydrogen mass ratio

Effect of ⁷Be decay rate on ⁸B solar neutrino flux

Considering dynamic equilibrium condition at the center of the sun, the flux of ⁸B solar neutrinos

$$\phi(^{8}B) \propto \frac{R(p)}{R(e) + R(p)}$$

Since R(p)~10⁻³R(e), so $\phi({}^{8}B) \propto \frac{1}{R(e)}$ R(e) at the solar core is calculated using nuclear matrix element extracted from terrestrial ⁷Be decay rate measurement.

Calculation of R(e) at the solar core

$$R(e)_{sun} = R(e)_{lab} A^{-1} \left(\frac{2}{\pi kT}\right)^{1/2} \alpha Z n_e$$

T, n_e are solar temperature, electron density at the solar core.

 α ,Z fine structure constant, atomic number of ⁷Be.

A is atomic overlap factor for terrestrial ⁷Be.

$$A = \frac{1}{4\pi^2} \left[\left\{ \psi_{1s}(0) \right\}^2 + \left\{ \psi_{2s}(0) \right\}^2 \right]$$

 $\psi_{1s}(0)$ and $\psi_{2s}(0)$ are electronic wave functions at the nucleus. *A* computed assuming ⁷Be has two full 1s and 2s electrons. *This assumption questionable for all terrestrial measurements done so far.* Change of ⁷Be decay rate in different environments

 $^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + \nu_{e}$

Decay rate \propto electron density at ⁷Be nucleus

Decay rate of ⁷Be in different beryllium compounds (⁷BeO, ⁷BeF₂) measured and up to 0.2% change in decay rate found.

Decay rate of implanted ⁷Be in Al, LiF, Au, Ta, Graphite(C) measured and 0.4% - 0.5% change in decay rate found.

We measured change in decay rate of ⁷Be in Au and Al_2O_3 and found 0.72% change in decay rate.

⁷Be implanted in Au and Al₂O₃

⁷Be was produced by bombarding a 250 μg/cm² thick lithium fluoride (LiF) target with a 7 MeV proton beam obtained from Variable Energy Cyclotron Centre, Kolkata.

Reaction *via* which ⁷Be was produced via $p + {}^{7}Li \rightarrow {}^{7}Be + n$

Decay scheme of ⁷Be electron capture $\frac{1/2^{-t_{1/2} = 73 \text{ fs}}}{3/2^{-t_{1/2} = 73 \text{ fs}}} = \frac{10.4\%}{89.6\%}$ ⁷Li

γ-ray spectra from decay of ⁷Be implanted in
(a) an Al₂O₃ pellet
(b) an Au foil

Differential measurement

$$(A_{Au} - A_{AlO})e^{\lambda_{Au}t} =$$

$$(A^0_{AlO}\Delta\lambda)t + (A^0_{Au} - A^0_{AlO})$$

$$\lambda_{AlO} = \lambda_{Au} + \Delta \lambda$$

Plot of $(A_{Au} - A_{AlO})e^{\lambda_{Au}t}$ versus time

$$\frac{\Delta\lambda}{\lambda_{Au}} = (0.00705 \pm 0.00072)$$

$$\frac{\Delta\lambda}{\lambda_{Au}} = (0.0078 \pm 0.0016)$$

Result

$$\frac{\Delta\lambda}{\lambda_{Au}} = (0.0072 \pm 0.0007)$$

Check of systematic error

Experiment -2

⁷Be implanted in Au and Zn

⁷Be was produced by an inverse process i.e. bombarding a proton rich target with heavy ion ⁷Li beam obtained from BARC+TIFR peletron machine at Mumbai.

⁷Be was produced *via* nuclear reaction

$$^{7}Li + p \rightarrow ^{7}Be + n$$

Experiment-3

⁷Be implantation in Au, C_{60} and Cd using a pure ⁷Be beam

The recoiled ⁷Be ions produced in the reaction were separated from primary ⁷Li beam by using a recoil mass spectrometer called Heavy Ion Reaction Analyser (HIRA) system NSC Delhi.

Experimental result

Difference between the half-lives of ⁷ Be implanted in	Percentage increase in Half-life of ⁷ Be in 1 st medium compared to that in 2 nd medium in column-1
Au and Al ₂ O ₃	(0.72±0.07)%
Au and Zn/Cd	(0.57±0.32)%
Au and Fullerene (C ₆₀)	(0.08±0.22)%

Half-life of ⁷Be in Au =(53.328 ± 0.082) days (Expt 2) Half-life of ⁷Be in Au = (53.311 ± 0.041)days (Norman et al.) Half-life of ⁷Be in Au = (53.60 ± 0.19) days (Expt 3)

Other Measurements

Older measurements:

Johlige et al. measured ⁷Be decay rates in different compounds. 0.2% difference (Phys. Rev **C2**, 1616 (1970)).

Recent Measurements:

Norman et al. measured half-lives of ⁷Be in Au, graphite, tantalum. 0.38% change in decay rate found. (Phys. Lett. **B519**, 15 (2001)) Ohtsuki et al. measured decay rate of ⁷Be @C₆₀. 1.2% difference in decay rate. (PRL, **93**, 112501(2004)). Liu et al. measured decay rate of ⁷Be in Au and Be. 0.12% difference seen. (Chin. Phys. Lett. **20**, 829 (2003)).

Qualitative understanding of decay rate results

Electron affinity of the host medium is primarily responsible for changing the number of valence 2s electrons of ⁷Be. As a result, the decay rate of implanted ⁷Be changes in different host media.

> Decay rate of ⁷Be found to be slowest in Au. Electron Affinity of Au = 2.3 eV Decay rate faster in Al, graphite, Al_2O_3 .

Need to consider lattice structure also.

Difference between the half-lives of	Electron affinity* in (eV)		Observed half- life difference	References on e half-life
(a) ⁷ Be implanted in	1 st medium	2 nd medium	$\frac{\Delta\lambda}{\lambda}$ ×100%	measured
Au and Al	2.308	0.441	(0.27±0.15)%	Norman+2001, Lagoutine+75
Au and Ta	2.308	0.322	(0.22±0.13)%	Norman+2001
Au and C(graphite)	2.308	1.25	(0.38±0.09)%	Norman+2001
Au and Cd/Zn	2.308	0-negative	(0.57±0.32)%	This work
Ta and C(graphite)	0.322	1.25	(0.17±0.11)%	Norman+2001
Au and LiF	2.308	~0	(0.36±0.15)%	Norman+2001, Jaeger+96
Al and LiF	0.441	~0	(0.10±0.20)%	Lagoutine+75, Jaeger+96
Au and Al_2O_3	2.308	~0	(0.72±0.07)%	This work
Au and C ₆₀	2.308	2.6	(0.08±0.22)%	This work
Au and ⁹ Be	2.308	~0	(0.02±0.06)%	Liu+2003
Ta and Al	0.322	0.441	(0.05±0.13)%	Norman+2001, Lagoutine+75
C ₆₀ and C(graphite)	2.6	1.25	(0.31±0.13)%	This work, Norman+2001
(b) ⁷ Be compounds ⁷ BeF ₂ and ⁷ BeO	Fluorine- 3.40	Oxygen- 1.46	(0.1375±0.0053)% (0.0609±0.0055)% (0.1130±0.0058)%	Leininger+49 Kraushaar+53 Johlige+70

TB-LMTO calculations for ⁷Be in a medium or forming compounds

Tight binding linear muffin-tin orbital method calculation is a first principle density functional calculation.

Initial Ansatz: Charge distribution spherical around each atom. Kohn-Sham equation solved self-consistently while minimizing total energy. LMTO basis states used. $V_{MT}(r) = V_i(r_i) + \sum_R V_R(r_R) \equiv V_o + \sum_R v_R(r_R)$

Input: Lattice dimensions, symmetry group, atomic structures. Output: $|\langle \psi_{total} | \psi_{Be2s} \rangle|^2$ computed for ⁷Be.

This represents average number (n_s) of 2s electrons of ⁷Be in a host medium or compound.

Plot measured ⁷Be decay rate (λ_{Be}) versus n_s calculated from LMTO code.

Decay rate difference between $^{7}Be(n_{s}=2)$ and $^{7}Be(n_{s}=0)$ is =3.4%. Agrees with Hartree's calculation(3.31%).

Measured terrestrial ⁷Be decay rate lower than neutral ⁷Be decay rate by 2% - 2.7%.

Difference in Half-life of ⁷ Be	Percentage increase of half-life of ⁷ Be in1 st medium compared to that in 2 nd medium		Method of ⁷ Be implantation in the hosts	
in	Experimental Value	Calculated value		
Au and Al_2O_3	(0.72±0.07)%	0.61%	Both using proton irradiation	
Al and LiF	(0.1±0.2)%	0.17%	Both using proton irradiation	
Au and ⁹ Be	(0.02±0.06)%	0.04%		
Au and Ta	(0.22±0.13)%	0.30%	Both using heavy ion ⁷ Li irradiation	
Au and C(graphite)	(0.38±0.09)%	0.44%	Both using heavy ion ⁷ Li irradiation	
Ta and C(graphite)	(0.17±0.11)%	0.14%		
Au and Al	(0.27±0.15)%	0.35%	Using ⁷ Li irradiation in	
Au and LiF	(0.36±0.15)%	0.51%	irradiation in 2nd	
Au and Cd/Zn	(0.57±0.32)%	0.42%	Both using ⁷ Be beam	
⁷ BeO and ⁷ BeF ₂ (hex)	(0.1375±0.0053)% (0.0609±0.0053)%	0.124%	The compounds were prepared following chemical processes	
⁷ BeO and ⁷ BeF ₂ (tetra)	(0.1130±0.0058)%	0.115%		

Effect of medium on L/K electron capture ratio of ⁷Be

If indeed n_s is significantly different from 2, then unlike small effect on decay rate, large decrease of L/K electron capture ratio expected.

Recently, L/K capture ratio of ⁷Be in HgTe measured P. Voytas et al., Phys. Rev. Lett 88, 012501 (2002). Expt L/K ratio = 0.040±0.006 Theoretical L/K ratio = 0.09

For ⁷Be in HgTe, $n_s=1.155$ Zeroth order correction factor =1.155/2.0 = 0.577 **Then theoretical L/K ratio = 0.052** Bahcall considering a dense hot plasma at the solar core derived the electron capture rate of ⁷Be as a function of electron temperature and concentration and obtained

$$R(e)_{star} = (2 / \pi kT)^{1/2} G_V^2 \alpha Z n_e q^2 \xi$$

The terrestrial (laboratory) decay rate of ⁷Be is given by

$$R(e)_{lab} = G_V^2 A(q_o^2 \xi_o + q_1^2 \xi_1) = G_V^2 A q^2 \xi$$

$$R(e)_{sun} = R(e)_{lab} A^{-1} \left(\frac{2}{\pi kT}\right)^{1/2} \alpha Z n_e$$

$$A = \frac{1}{4\pi^2} \Big[\{ \psi_{1s}(0) \}^2 + \{ \psi_{2s}(0) \}^2 \Big]$$

Observed decay rate change of ⁷Be in different media & Measured L/K electron capture ratio

⁷Be in a medium loses significant fraction of its 2s electrons.

Overlap factor A decreases by 2% to 2.7% in different media.

$$R(e)_{sun} = R(e)_{lab} A^{-1} \left(\frac{2}{\pi kT}\right)^{1/2} \alpha Z n_e$$

R(e) increases by 2 - 2.7%. Since $\phi(^{8}B) \approx \frac{1}{R(e)}$, calculated $\phi(^{8}B)$ decreases by 2 - 2.7%.

Summary

Experimentally measured decay rate change of ⁷Be in different media (Au, Al₂O₃, Cd, Zn, fullerene (C₆₀)).

•Our data and other available results on the change of ⁷Be decay rate were qualitatively and quantitatively understood.

Calculated ⁸B solar neutrino flux should decrease by 2%-2.7%

Collaborators:

- P. Das
- S. K. Saha
- S. K. Das
- A. Mookerjee
- J. J. Das
- N. Madhavan
- P. Sugathan
- A. Jhingan
- S. Nath

Exchange Correction Factor for L/K Capture Ratio

Direct L capture One 2s electron absorbed by ⁷Be _____ (both) $2s \rightarrow 2s'; 1s \rightarrow 1s'$

Exchange L capture One 1s electron absorbed by ⁷Be one $2s \rightarrow 1s'; 1s \rightarrow 1s'; 2s \rightarrow 2s'$

$$\frac{\lambda_L}{\lambda_K} = \left(\frac{\lambda_L}{\lambda_K}\right)^0 \left\{ \frac{1 - (R_{1s}(0) / R_{2s}(0)) \langle 1s' | 2s \rangle}{1 - (R_{2s}(0) / R_{1s}(0)) \langle 2s' | 1s \rangle} \right\}^2$$

Expected L/K electron capture ratio of ⁷Be in other media

⁷ Be implanted	Correction factor for in-medium	In-medium effect corrected (L/K) ratio	
in	effect	Bahcall's calculations	Vatai's calculations
НдТе	0.577	0.0519	0.0635
Al ₂ O ₃	0.404	0.0363	0.0475
⁹ Be	0.4155	0.0374	0.0457
LiF	0.3659	0.0333	0.0406
Al	0.344	0.0310	0.0378
Cd	0.3385	0.0305	0.0372
Zn	0.3295	0.03	0.0362
Та	0.2986	0.027	0.0328
Au	0.208	0.0187	0.0229

TB-LMTO method: A schematic view

First principle density functional calculation

Hohenberg-Kohn Theorem:

Total enery is a functional of e⁻ density. Energy functional $E[\rho(r)]$ is minimum for ground state density ρ_{0} .

Total Energy functional for a system of electrons in presence of interacting ions

 $E[\rho(r), \{R\}] = E_{el}[\rho(r), \{R\}] + E_{ion}[\{R, R'\}]$

 $= T_{s}[\rho] + E_{xc}[\rho] + E_{ES}[\rho, \{R\}]$

$= T_{s}[\rho] + E_{xc}[\rho] + E_{ES}[\rho, \{R\}]$

 $T_s[\rho]$ the kinetic energy (K.E.) of non-interacting electron gas of same density as that of the actual system

 $E_{xc}[\rho]$ the exchange-correlation energy which depends on the relative orientation of the spin of the electrons

the total electrostatic energy, i.e. energies due to classical electron-electron Coulomb, external potential and ion-ion Madelung potential. In terms of 1e⁻ eigenfunction $\Psi_i(\vec{r})$ and occupancy n_i

$$\rho(\vec{r}) = \sum n_i |\psi_i(\vec{r})|^2; E[\rho(r)] \equiv E[\{\psi_i\}, R]$$

$$E[\{\psi_i\}, \vec{R}] = -\sum_{i}^{occ} n_i \int d\vec{r} \psi_i^*(\vec{r}) \nabla^2 \psi_i(\vec{r}) + \int d\vec{r} \rho(\vec{r}) V_{ext}(\vec{r}) + \iint d\vec{r} d\vec{r}' \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r} - \vec{r}'|}$$

+
$$E_{xc}[\rho(\vec{r})]$$
 + $\sum_{R,R'} \frac{Z_R Z_{R'}}{|\vec{R} - \vec{R'}|}$

Variational principle => Euler equation

$$\frac{\delta E[\rho]}{\delta \rho}|_{\rho=\rho_0} = 0 \qquad \qquad \delta \left\{ E_{tot}^{el}[\rho(r)] - \mu \int \rho(r) dr \right\} = 0$$

Exchange energy

The electrostatic energy of a system will depend on relative orientation of the spins: The difference in energy defines the exchange energy.

If two spins are antiparallel, the wavefunction of the two electrons is symmetric If two spins are parallel, Pauli exclusion principle requires the orbital part of the wave-function be antisymmetric.Iinterchange of co-ordinates the wavefunction changes sign)

Resulting Kohn-Sham (KS) equation:

$$\{-\nabla^2 + V_{eff}(r)[\rho]\}\psi_i(r) = \varepsilon_i\psi_i(r)$$

where

$$V_{eff}(r)[\rho] = 2\int dr' \frac{\rho(r')}{|r-r'|} + V_{ext}(r) + \mu_{xc}(\rho(r))$$

V

Different 1e⁻ band structure methods

Fixed basis method

 $[H-E_jO]a_j=0$

Solving algebraic eigenvalue equation

Energy independent basis

Large matrix inversion Straightforward Partial wave method

 $[M(\epsilon)]b_j=0$

Finding roots of secular equation

Non-linear energy dependent

Expensive computation Highly accurate

Muffin-tin orbital method: *Highly Efficient, Reasonably accurate*

Fixed (energy independent) basis function is derived from the energy dependent partial waves in the form of Muffin-tin Orbitals (MTO)

$$V_{MT}(r) = V_{i}(r_{i}) + \sum_{R} V_{R}(r_{R}) \equiv V_{o} + \sum_{R} v_{R}(r_{R})$$
$$V_{MT}(r) = \begin{cases} v_{R}(r) - V_{o} \dots r \leq s_{R} \\ 0 \dots r \geq s_{R} \end{cases}$$

Radial part

$$\begin{bmatrix} -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + v_R(r) - E \end{bmatrix} r \chi_{Rl}(E,r) = 0$$

$$\begin{bmatrix} -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} - \kappa^2 \end{bmatrix} r y_l(\kappa r) = 0$$

$$\kappa = \sqrt{(E-V_o)}$$

Approximations:

Atomic sphere approximation (ASA) Tight Binding approximations Energy linearisation

- •Neglect non-spherical parts of the potential
- •Neglect interstitial region
- •Neglect higher partial waves

$$\chi_{Rl}(E,r) = \phi_{Rl}(r) + (E - E_v) \dot{\phi}_{Rl}(r) + O(E - E_v)^2$$
$$\phi_{Rl} \equiv \phi(E_v,r) \quad \text{and} \quad \dot{\phi}_{Rl}(r) \equiv \partial \phi(E,r) / \partial E \mid_{E=E_v}$$

Using This Highly Efficient, Reasonably accurate method of calculation

 Ψ_{total} the complete wave function of the crystal system If Ψ_{Be2s} beryllium 2s state wave function.

The square of the overlap of Ψ_{total} with Ψ_{Be2s} , i.e $|\langle \Psi_{total} | \Psi_{Be2s} \rangle|^2$ represents the average number of 2s electrons in beryllium atom when it is implanted in a material.

LMTO Code

Inputs

- •Lattice structure
- •Partial co-ordinates of the constituents
- •Atomic number
- •Position of the implanted atom

Steps:

Hartree potential calculation

Check for atomic sphere Overlap

Self-consistent calculation

Solar Neutrino Spectrum

Sudbury Neutrino Observatory (SNO)

http://www.sno.phy.queensu.ca

