SLENA, SINP January 16-20, 2006

Radioactive Ion Beam facility at VECC Kolkata

Alok Chakrabarti

Variable Energy Cyclotron Centre Kolkata, India

Plan of the talk

Introduction

RIB up to 2007 & its status

Future outlook

Intensity of RIB for various experiments (ISOL) $I_{RIB} = I_{primary} * N_t * \sigma * \eta$

Physics Topics	Reaction & Techniques	Beams	Intensities (pps)	Energy (MeV/u)
Rapid Proton Capture (rp) Process	Transfer, Elastic, Inelastic, Radiative capture, Coulomb dissociation	¹⁴ O, ¹⁶ O, ²⁶ Si, ³⁴ Ar, ⁵⁶ Ni	10 ⁸ to 10 ¹¹ 10 ⁵ to 10 ¹¹	0.15 - 15
Studies of N=Z nuclei, symmetry studies	Transfer, Fusion, Decay Studies	⁵⁶ Ni, ⁶² Ga, ⁶⁴ Ge, ⁶⁸ Ge, ⁶⁷ As, ⁷² Kr	10 ⁴ to 10 ⁹	0.1 - 15
Decay Studies of ¹⁰⁰ Sn	Decay	¹⁰⁰ Sn	1-10	Low
Proton drip line studies	Decay, Fusion, Transfer	⁵⁶ Ni, ^{62,66} Ge, ⁷² Kr	10 ⁶ to 10 ⁹	5
Slow n-capture (S- process)	Capture	^{134,135} Cs, ¹⁵⁵ Eu	10 ⁸ to 10 ¹¹	0.1
Symmetry studies with Francium	Decay, traps	^A Fr	10 ¹¹	Low
Heavy element studies	Fusion, decay	⁵⁰⁻⁵² Ca, ⁷² Ni, ⁸⁴ Ge, ⁹⁶ Kr	10 ⁴ to 10 ⁷ 10 ⁶ to 10 ⁸	5 - 8

Intensity of RIB for various experiments *cont...*

Physics Topics	Reaction & Techniques	Beams	Intensities (pps)	Energy (MeV/u)
Fission Limits	Fusion, Fission	¹⁴⁰⁻¹⁴⁴ Xe, ¹⁴²⁻¹⁴⁶ Cs, ¹⁴² I, ¹⁴⁵⁻¹⁴⁸ Xe, ¹⁴⁷⁻¹⁵⁰ Cs	10 ⁷ to 10 ¹¹ 10 ⁴ to 10 ⁷	5
Rapid n-capture (r- process)	Capture decay mass measurement	¹³⁰ Cd, ¹³² Sn, ¹⁴² I	10 ⁴ to 10 ⁹	0.1 - 15
Nuclei with large neutron excess	Fusion, Transfer, Deep inelastic	¹⁴⁰⁻¹⁴⁴ Xe, ¹⁴²⁻¹⁴⁶ Cs, ¹⁴² I, ¹⁴⁵⁻¹⁴⁸ Xe, ¹⁴⁷⁻ ¹⁵⁰ Cs	10 ⁷ to 10 ¹¹ 10 ² to 10 ⁷	5-15
Single particle states, effective nucleon-nucleon interaction	Direct reactions, Nucleon transfer	¹³² Sn, ¹³³ Sb	10 ⁸ to 10 ⁹	5-15
Shell structure, weakening of gaps, spin-orbit potential	Mass measurement, Coulomb excitation, Fusion, Nucleon transfer, Deep inelastic	^A Kr, ^A Sn, ^A Xe	10 ² to 10 ⁹	1-10

Production of Radioactive Ion Beams

<u>ISOL (ISOLDE, ISAC, SPIRAL, Oak Ridge, Louvain-la-Neuve, VECC,...)</u>

Fragmentation (NSCL,GSI,RKEN,GANL,...)

Accelerator Development

<u>Aim</u> High current stable ion acceleration & good enough intensity for a wide range of RI Beams

Challenges

- High power target
- Ion source/charge breeder
- Low energy accelerating structures
- Heavy Ion storage rings

He-jet skimmer ECRIS- alternative to 2-IS

14

He-jet skimmer system

He-jet coupled Isotope Separator On-Line (ISOL) system @ VECC

6.4 GHz On-Line ECR ion-source @ VECC

ECR ion-source parameters

ECR parameters :	Value :
Frequency	6.4 GHz
RF Power (maximum)	3 kW
B _{ECR}	0.23 Tesla
Axial magnetic field (B _z) (Solenoid)	0.95 Tesla (inj.) ; 0.7 Tesla (ext.)
Radial mag. field at plasma chamber i.d. (B _r)	0.7 Tesla
Mirror ratio	5.9 (inj); 4.375 (ext)
Plasma chamber I.D	100 mm
ECR overall dimensions	0.98 m dia; 1m length
Power (both solenoid coils)	60 kW

Thick target R&D

• First few targets

Carbon*, Al₂O₃, HfO₂, BN, LiF, MgO, CaCl₂, ThC₂, UC₂, ZrO₂

*RVCF : Reticulated Vitreous Carbon Fiber

SEM of $AI_2O_3 \& HfO_2$

SEM of RVCF

SEM of composite target : RVCF + AI_2O_3

First few RI beams

RIB	T _{1/2}	Reaction	Target
¹¹ C	20 min	¹¹ B(p,n)	BN
¹³ N	10 min	¹³ C(p,n)	Graphite
¹⁷ F	1 min	¹⁴ N(α,n)	BN
¹⁸ F	110 min	¹⁶ Ο(α, n)	HfO_2, Al_2O_3
¹⁹ Ne	17 sec	¹⁹ F(p,n)	LiF
³⁵ Ar	1.7 sec	³⁵ Cl(p,n)	CaCl ₂
³⁸ K	7.6 min	³⁵ Cl(α,n)	CaCl ₂
⁹⁰ Kr	32 sec	U/Th(α,f)	UC/ThO
⁹³ Rb	6 sec	-do-	-do-

Target release experiments with 140 MeV Oxygen beam at He-jet system

Yield enhancement due to increase in surface to volume ratio

RADIOFREQUENCY QUADRUPOLE (RFQ): first post-accelerator

- Acceleration of RIB from 1 to 86 keV/u
- Heavy Ion RFQ \rightarrow q/A = 1/16 ; f = 35 MHz
- Extended rod structure → Vane Length 3104 mm ; Vane Voltage 49.5 kV
- Transmission ~ 83 % with external pre-buncher

 $\begin{array}{l} \mathsf{RFQ} \ \mathsf{development} \Rightarrow \texttt{stage 1} \Rightarrow \texttt{1}_2 \ \ \texttt{scale model} \\ \texttt{stage 2} \Rightarrow \texttt{30} \ \texttt{keV/u} \ \texttt{RFQ} \\ \texttt{stage 3} \Rightarrow \texttt{86} \ \texttt{keV/u} \ \texttt{final RFQ} \end{array}$

Result of RFQ ¹/₂ scale model tests

Quantity	Measured	Expected (theoretically)
f (MHz) Q R (kQ)	73.00 3500 35	70.00 6951 61.52
p ()		

30 keV/u heavy-ion RFQ (close-up)

Quantity	Measured	
f	33.7 MHz	
Q	5250	
Vane voltage	15.3 kV	
Power	1.1 kW	
O ³⁺ beam	~ 85 %	
transmission η		

Optimized beam dynamics parameters for RFQ with external pre-buncher

RFQ : list of optimized parameters

Basic pa	rameters	Basic physical parameters
Operating frequency	35 MHz	Cavity length 3250 mm
Input energy (keV/u)	1.0 keV/u	Cavity width & height (inner) 600 mm X 520 mm
Output energy (keV/u)	85.56 keV/u	
Charge to mass ratio q/A	1/16	
Beam dynamic	cs parameters	RF structure parameters
Length of vanes	3104 mm	Calculated Q value of the cavity 9830
Synchronous phase	-90° to –30°	Calculated R_p value 87.12 k Ω
Total number of cells	145	Total power loss (calculated) 14.3 kW
Characteristic bore radius r_o	7.1 mm	
Minimum bore radius a _{min}	4.0 mm	
Maximum modulation m _{max}	2.329	
Focusing strength B	4.83	
Inter-vane voltage	49.5 kV	
Kilpatrick factor	1.2	
Transmission (< 1 mA)	74% (buncher voltage 40 V)	
	84% (buncher voltage 78 V)	
Minimum energy width ∆E/E	0.28% (buncher voltage 40 V)	
(FWHM)	0.56% (buncher voltage 78 V)	

Transfer of RIB from RFQ to LINAC

- Configuration : QQ-Rebuncher-QQ
- Total length : 3.934 m

Re-buncher

Between RFQ & Linac-1

Re-buncher parameters

- Frequency : 35 MHz
- Max. gap vol. : 13.75 kV
- No. of gaps : 4
- Drift tubes : 140 x 140 sq. mm
- Beam aperture: 50mm dia.
- Drift tube gaps : 9.85 mm

Heavy-ion IH LINAC for RIB

- Acceleration of RIBs after RFQ from 86 keV/u to 400 keV/u
- IH LINAC → q/A = 1/16 ; f = 35 MHz ; E_max ~ 1.3*E_K (=10.2 MV/m)
- Transmission ~ 100 % ; Normalised acceptance $\epsilon_n = 0.5 \pi$ -mm-mrad

Important Parameters for the first three LINAC cavities

Parameter	Unit	Tank-1	Tank-2	Tank-3
Frequency	MHz	35	35	35
q/A	>=	1/16	1/16	1/16
E(in) →E(out)	KeV/u	86.0 →158.2	158.2 →263.0	263.0 →397.5
$\beta(in) \rightarrow \beta(out)$	%	1.36 →1.84	1.84 →2.38	2.38 →2.92
# of Cells & gaps		9	11	13
Bore radius	cm	1.25	1.25	1.25
Gap length	cm	2.92	4.0	5.1
Cell length	cm	5.84 →7.9	8 →10.13	10.2 →12.46
Peak Vol. On drift tubes	kV	171.8	202.0	217.6
Transit Factor		0.79 →0.84	0.80 →0.86	0.82 →0.86
Sync.Phase	Deg	-25	-25	-25
Cavity Length	m	0.618	0.996	1.476
Cavity Diameter	m	1.72	1.72	1.72
Shunt Impedance	ΜΩ/m	369	487	474
Quality Factor		15878	21571	26284
Power	kW	10.5	10.2	11.5

Project schedule

- $RFQ \Rightarrow 30 \text{ keV/u}$ Sept 2005
- RFQ \Rightarrow 86 keV/u
- Linac 1
- Linac 2
- Linac 3

Jun 2006

Dec 2006

Jan 2007

Jan 2008

The Next Step! (2007-2016)

• RIB production route ^{238/235}UC Photo-fission

Expected yield of some very neutron-rich exotic nuclei at target
⁷⁸Ni (doubly magic): 2 x 10⁹ pps
¹³²Sn (doubly magic): 2 x 10¹¹ pps
⁹¹Kr (for SHE production): 1 x 10¹² pps

⁹⁴Kr (for SHE production): 3 x 10¹⁰ pps

Implementation strategy

XIth PLAN RIB PROJECT ACTIVITY AT VECC

__New building

Existing building

Implementation strategy

Cost Projection

Plan period		Expenditure (Rs Cr)
11 th plan	Additional fund for completing 10 th plan activities	3.00
	LINAC, Buncher Cavities & RF Transmitter	17.00
(2007-2010) at VECC	Beam lines, magnets etc	6.00
	Detectors & experimental facilities for 1.5 MeV/u	4.00
	Target R&D,Two ion source R&D	5.00
	Small Building for R&D facilities, Services & misc.	5.00
	Building, Infrastructure at New Campus	(2007-2010) 40.00
(2007-2012)	Electron LINAC	(2010-2011) 30.00
at New Campus	RIB from 1.5 to 3 MeV/u	(2010-2012) 10.00
	Experimental facilities	(2010-2012) 10.00
	Total 11 th plan	130.00
1 Oth relieve	RIB from 3 to 6 MeV/u	(2012-2014) 30.00
(2012-2016)	Experimental facilities	(2012-2014) 20.00
at New Campus	Small storage rings for HI & electrons	(2012-2016) 80.00
	Total 12 th plan	130.00
TOTAL Project Cost (Rs. Crores)		260.00 ~ 50 Million US\$

Particle energy distribution

