NUCLEAR PHYSICS, SPINOFF TECHNOLOGIES AND IMPACT ON SOCIETY

S.KAILAS

UM and DAE Centre for Excellence in Basic Sciences, Mumbai

Growth of Nuclear Physics Research

Why Charged Particle Accelerator

- Ions from H to U
- Single to multiple charged ions-
- Ion energies from eV to TeV
- Beam intensity -a few ions/cm² to 10¹⁸ ions/ cm²
- Size of ion beam cm to nm
- Scan ions over an area a few sq.cms
- Range of ions from nm to m
- Secondary particles
- Wavelength \propto is $1/\sqrt{E}$ investigate nuclei,
- Matter, molecules, atoms..
- Creation of New particles E = Mc²

There are nearly 30000 accelerators both big and small and of Different types (as per 2018 data)

60% are used in Industry

30% in Healthcare

Around 1 % in Basic research

Accelerators developed for Nuclear and Particle physics have tremendous applications in multidisciplinary areas

Accelerators employ SC and RF technologies in plenty LHC has nearly 10000 SC magnets!

PHYSICS IN SOCIETY

Nuclear Physics – Recent Highlights

The Era of Higgs Physics July 1, 2022 • Physics 15, 98

Ten years of Higgs physics have revealed how much more there is to learn about the mysterious particle.

Ten years after its discovery, the Higgs may have disappointed some with its adherence to the standard model. But its apparent conformity has proven useful, and its remaining secrets continue to inspire particle physicists.

S. Nagamiya Entropy 24,482 (2022)

High ENERGY DENSITY Nuclear Matter

Shape of Atomic Nuclei in High Energy Heavy Ion CollisionsJ. Jia (2021)https://arxiv.org/abs/2106.08768

In the hydrodynamic model description of heavy ion collisions, the final-state anisotropic flow is linearly related to the strength of the multi-pole shape of the distribution of nucleons in the transverse plane

This opens up the possibility to map the shape of the atomic nuclei at a timescale (< 10–24s) much shorter than probed by low-energy nuclear structure physics (< 10–21s)

Growth of Nuclear Physics

Neutron Number

Time Line for Discovery of Elements

Time Line for Discovery of Isotopes

Thoennessen and Sherril,2011

Direct measurements of the ¹²C+¹²C reactions cross-sections towards astrophysical energies Eur. Phys. J. A (2022) 58:65

Continues to be interesting and challenging for the Past 50 years

New measurement of cross section influences sizably the yields of 60Fe,152Gd and 205Pb in particularPRL 127 , 152701 (2021)

Yesterday's Science. Today's Technology Nuclear Fission and Fusion Reactions Basic Research - the heart of Nuclear Power

Nuclear Power Programme Becquerel (1898) Radioactivity Einstein (1905) Special Theory of Relativity **Rutherford (1911) Nucleus** Chadwick (1932) Neutron Hahn & Strassmann (1939) Nuclear fission (1939) Nuclear Fusion in the Sun Bethe

Nuclear power plants in India

7480 MW (19 PHWRs, 2BWRs,2LWR) in operation

• 500 MW (1 PFBR) under construction***

• More in the pipeline

Nuclear Reactors nearly 450 -generating power in the world. Around 50 under construction. India has 23 operational reactors.

Nuclear energy contributes to nearly 10% of total electricity But contributes to 30% of low carbon electricity in the world

Nuclear complements other renewables like wind and solar.

Nuclear energy will continue to be important in the energy mix To achieve 1.5 deg temperature rise to be achieved by 2050.

HEALTHCARE

HEALTHCARE

Radio-isotopes through Nuclear Reactions

Reactor produced isotopes – 60Co,131I, 99mTc Accelerator produced isotopes – 18F, 201Tl,123I

Used for Diagnosis and Treatment

Image organs and also determine the functioning Of Brain and Heart,

Image Blood flow, Glucose uptake, Oxygen consumption

Tumor/ cancerous cells absorb more Glucose than Normal cells. 18F used Distinguish cancer//Non Cancer cells

Iodine has great affinity for Thyroid – 123,131I used Diagnose Thyroid disorder

Slower washout of Thallium from compromised but viable myocardial tissue as compared to normal ones- 201Tl used Functioning of heart

Radioisotope	Half-life	Radiation	Nuclear Reaction for Production
131 I	8 days	β Eγ=364,637 keV	130Te(n, γ)131Te β decays to 131I Also as fission fragment
99mTc	6 hrs	IT Eγ =140.5 keV	98Mo(n, γ)99Mo β decay to 99mTc 100Mo(n,2n)99Mo β decay to 99mTc
18F	110 mins	Beta+	18O(p,n)18F
201TI	73 hrs	EC Eγ=135,167 keV	203Tl(p,3n)201Pb β+ decay to 201Tl
123 I	13.3 h	EC Eγ = 159 keV	123Te (p,n) 123I
177Lu	6.7 days	β Eγ = 113,208 keV	176Lu(n, γ)177Lu

Medical Cyclotron

Features of PET trace® Medical Cyclotron

Fixed Beam Energy variable current
16.5 MeV (H-), 75 µA single beam, 40 µA dual beam

•4 MeV (D-) 60 µA single beam, 30 µA dual beam

Radionuclides that can be Produced
18F, 11C, 13N & 150
Some years ago
60 PET – CT in India
30 more planned

TMH/ RMC, Mumbai

30 MeV Medical Cyclotron at Kolkatta

200 MeV Medical Synchrotron At Chennai For Cancer Therapy

200 MeV Medial Synchrotron At TMH Coming up

Brain scan using the PET

BHABHATRON -II: Indigenous Cobalt-60 Teletherapy Unit

- First unit of Bhabhatron-II was installed at IRCS Cancer Hospital, Nellore, AP
- On December 11, 2006, the President of India has dedicated the machine to the service of the nation
- One Bhabhatron-II was gifted to Vietnam (Can Tho General Hospital)

Added Features

- >Battery back-up for treatments during power failures
- > Optical-fibre communication
- Sleek and aesthetic appearance
- > Reduced DU requirement
- ≻At no extra cost
- > More than 26 machines supplied

Industrial Applications

- Ion Implantation digital electronics
- Electron Beam based materials processing
- Radioisotopes in process industry
- > Ion beam analysis of materials
- High energy X-ray inspection of cargo
- Portable Neutron generators for space programme
- Synchrotron radiation for applications
- > Production of TEM- Microporous filters –separation science
- Flue gas treatment with electron beam to get rid of NO2 and SO2
- > ACCELERATOR MASS SPECTROMETRY- Multidisciplinary

Co57 Eg= 122, 136 keV. 271 days

Co60. Eg = 1170, 1330 keV. 5.27 yrs

Technique based on attenuation of gamma

Nuclear Data in Industry NUCLEAR TECHNIQUES

- Elastic Recoil Detection (ERD)
- > Nuclear Resonance Analysis (NRA)
- > Prompt Gamma Activation Analysis(PIGE)
- > Neutron/charged particle Activation Analysis(NAA/CPAA)

EMPLOYED IN

Characterisation of Materials / Surfaces
 Trace Level Impurities – detection and quantification
 Composition of Compounds- elemental identification
 Monitoring -wearing of material surface

Use of 12C(p,p) Nuclear Resonance in Material Analysis

Trace level Carbon in Silicon Matrix

COUNTS

¹²C(p,p₀)¹²C 170.0deg.

ARCHAEOLOGY

Accelerator Mass Spectrometer(AMS)

STABLE ISOTOPES OF VERY LOW ABUNDANCE

AND

LONG LIVED RADIOACTIVE ATOMS IN LOW CONCENTRATIONS

NEARLY 100 AMS FACILITIES

PROGRAMMES Geology, Archeaology, Hydrology, Climate, Medical.....

Famous Artifact Radiocarbon Dated Half life of 14C is around 5730 yrs

Ratio 14C/12C is a measure Of the age of the sample 14C is radioactive and 12C Is stable

Kennewick Man

- Found in July 1996
- Almost immediately controversial
- Who owns? Indian tribes? Local officials? Scientists?
- Bone dated 9,000 years old!
- Clearly pre-Columbian

Pigments/elements used In Ancient paintings

Portable PIXE(alpha)

AGLAE in France (located in a museum)

LABEC in Italy

Small Accelerators Dedicated to this activity

Using PIXE/PIGE

AGRICULTURE

Isotope Hydrology Applications- Radio Tracers (82Br,198Au) or stable/radioactive (2,3H,13,14C)

Identification of Ground Water Sanctuaries at Anjangaon, Amravati Dist, Maharashtra- nearby site for Borewell BEFORE

AFTER

Nuclear Radiation in Agriculture-42 crop varieties from BARC

Trombay Groundnuts In Farmers Field in Karnataka

Trombay Groundnuts In Farmers Field in Receding Moisture Situation

Mutation for variability-Natural or artificial Gamma Irradiation Produces Accelerated Mutation High Yielding -Early Maturity Large Seed Size-Drought Tolerant, Resistance to Biotic and Abiotic Stress

Mungbean, Uridbean, Mustard...

Nuclear Radiation in Food

 30 % of Food and Fruit - spoilt due to poor Storage
 Nuclear Radiation can be used to Extend the Shelf Life

Insect can be disinfected
 Eliminate Food Borne pathogens and parasites

Delay in Ripening of FruitsInhibition of Sprouting

16 Gamma Irradiation Plants operational
 We have electron accelerator at Indore developed
 By RRCAT for irradiation of agricultural products

NATIONAL SECURITY

Schematic of cargo scanner based on Electron Accelerator

Courtesy: Dr. A.Sinha

Detection of Explosives and Illicit Drugs

Thermal neutron capture

Neutron Energy 0.025 eV

¹⁴N + thermal neutron \rightarrow ¹⁵N + γ (10.83 MeV) ¹H + thermal neutron \rightarrow ²H + γ (2.223 MeV)

TNA spectrum for a bag with and without a small explosive

Fast neutron inelastic scattering

Fast Neutron Inelastic Scattering to detect explosives in luggage

Mass Attenuation coefficient **Of Thermal Neutrons** MAC = Σ / ρ $\Sigma = 6.0 \times 10^{23} \sigma \rho / A$ $I = Io exp(- MAC X \rho x)$

MAC value for H (H2O) are very large compared to Steel and Lead

We can use thermal neutrons to look at H Inside Steel or Lead

DAE – ISRO collaboration Portable 14 MeV neutron Generator surrounded by Moderator to get thermal Neutrons

NEUTRON IMAGING

Pyrotechnic devices – mg quantity explosive inside SS vessel. Crucial for space programme. How to know the right amount of explosive is present inside SS? Use thermal neutrons significantly more Sensitive to Hydrogen(in explosives) than to the SS vessel. **Courtesy: Dr.A.Sinha**

Neutrino Detectors as Tools for Monitoring a Reactor

RMP 92 (2020) Bernstein et. al.

Cerium Ruthenium Low-Energy Antineutrino Measurements for Safeguarding Military Naval Reactors (submarine). PRL 128 (2022) 240803

Fission fragments beta decay and emit antineutrinos even when reactor is shut 144Ce 106Ru

CFY.	235U fission	0.055	0.004
CFY.	239Pu fission	0.037	0.042

Measurement of ratio of Ce to Ru is a measure of Pu fission fraction

To Sum Up:Basic research

- **Intrinsic interest**
- Connection to other disciplines

Doing basic research - use this Knowledge for development of technologies relevant to society

Today's Science is Tomorrow's Technology!

Nuclear Physics and related technologies -Have profound influence on Society-Energy, Health, Industry, Agriculture, Security......

References

- S. Kailas and R. Chidambaram Accelerators for Science and Society Proc. Indian National Science Academy 89A (2019)3
- *R.K.Bhandari and A. Roy. Next generation particle accelerators for frontline research and wide ranging applications Current Science 108(2015)1608*
- D.V.Gopinath and N.Ramamoorthy, Ionising Radiation and Mankind, Cambridge Scholars Publication (2019)
- K.M.Varier, A. Joseph and P.P.Pradymnan, Advanced experimental techniques in modern physics, Pragati Prakashan(2006)
- <u>www.accelerators-for-society.org</u>

Contact email address. swaminathankailas305@gmail.com