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Light Front Dynamics

Dirac, RMP (1949)

x- x+x0

x3

x± = x0 ± x3, x⊥ = (x1, x2)

x+ “time”, x− longitudinal coordinate

x2 = x+x− − (x⊥)2

[ x2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 ]

k.x = 1
2k

+x− + 1
2k

−x+ − k⊥ · x⊥

For an on mass shell particle k2 = m2 →

longitudinal momentum k+ = k0 + k3 ≥ 0

energy k− = (k⊥)2+m2

k+ .

No square root

Non-relativistic structure in transverse plane

Large energy for large k⊥, small k+
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Lorentz Symmetries

Boosts

a) Longitudinal: x±
′
= e±φx±

→ scale transformation

Leaves x+ = 0 invariant (kinematical)

b) Transverse: Galilean boosts

Non-relativistic (kinematical)

In a relativistic theory, internal motion and the

motion associated with the center of mass can

be separated out at the kinematic level

Can construct boost invariant wavefunctions

Rotations

Rotation in the transverse plane kinematical

Light front helicity

Rotations about x1, x2 axes change x+ = 0

Dynamical (like the Hamiltonian)
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Apparent Triviality of the Vacuum:

Longitudinal momentum k+ ≥ 0

In conventional In Light front

Quantum Field Theory Field Theory

Restriction Restriction
∑

i ki = 0 k+
i = 0

Vacuum processes receive contributions only

from k+ = 0. If k+ = 0 is removed (k+
i > ε)

Fock space vacuum | 0〉 is an eigenstate of the

light front QCD Hamiltonian =⇒ Constituent

picture

To build the hadron, we need not first construct

the ground state (Vacuum) of the theory.
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Why Transverse Lattice QCD?

• Infinitely many degrees of freedom - Need to

put cutoffs

Lattice provides a gauge invariant cutoff

• Hamiltonian provides the most direct route to

wavefunctions

Keep time direction continuous

• Theory is inherently nonlocal in x−

Keep x− continuous

• Conventional ultraviolet divergences come from

small x⊥

Discretize transverse space

• Retain minimal gauge invariance - gauge

invariance associated with x− independent

gauge transformations

Fix the gauge A+ = 0

Many high energy experiments probe the hadron

structure very close to the light cone.

Zeroth order approximation to the cut-off theory

contains many nonperturbative features close to

the real world, e.g. confinement.
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Transverse Lattice QCD

QCD Lagrangian density in the continuum

L = ψ̄(iγµDµ −mf )ψ +
1

2
Tr(FρσF

ρσ)

with F ρσ = ∂ρAσ − ∂σAρ + ig[Aρ, Aσ], Aρ = AρaTa.

Longitudinal derivative ∂± = 2 ∂
∂x∓ ,

Gamma matrices γ± = γ0 ± γ3.

Projection operators Λ± = 1
4
γ∓γ±,

Fermion field components ψ± = Λ±ψ.

Choose the gauge condition A+ = 0. Then A− becomes

a constrained variable.

Keeping the variable x+, x− continuous, discretize the

transverse space, x = (x1, x2).

Replace the continuous gauge fields

Ar(x⊥, x−, x+), r = 1, 2 by the lattice link variable

Ur(x, x−, x+) which connects x to x + ar̂.
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The constraint equations are

i∂+ψ− = [iαrDr + γ0m]ψ+

where Dr is an appropriately defined covariant

lattice derivative and

(∂+)2A−α = 2g 1
a2

(

J+α
LINK − J+α

q

)

.

The dynamical field ψ+ can be represented by two

components such that ψ+(x−,x) =

[

η(x−,x)

0

]

where η is a two component field.

The currents

J+α
q (x) = 2η†(x)Tαη(x)

J+α
LINK(x) =

∑

r
1

g2 Tr

{

Tα[Ur(x)i
↔

∂+ U†
r (x)

+ U†
r (x − ar̂)i

↔

∂+ Ur(x − ar̂)]

}

.

After eliminating the constraint fields we arrive at

the transverse lattice Hamiltonian P− = P−
1 + P−

2

where P−
1 arises from the elimination of ψ− (hence

sensitive to how fermions are put on the transverse

lattice) and P−
2 contains Wilson plaquette term

and the terms arising from the elimination of A−.
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P−
2 =

∫

dx−a2
∑

x

[

−
1

g2a2

∑

r 6=s

{

Trace

[

Ur(x)Us(x+ar̂)U−r(x+ar̂+aŝ)U−s(x+aŝ)−1

]

}

↑

Wilson Plaquette term

−
g2

2a2
J+α

LINK

(

1

∂+

)2

J+α
LINK

+
g2

a2
J+α

LINK

(

1

∂+

)2

J+α
q

−
g2

2a2
J+α

q

(

1

∂+

)2

J+α
q

]

.

↑

four − fermion (current − current) interaction

↓

linear confinement in x− direction

The presence of constraint equation for fermion

field allows different methods to put fermions on

the transverse lattice.



9

'

&

$

%

Fermions on Transverse Lattice

Fermions with forward and backward derivatives

With forward derivative for ψ+ and backward

derivative for ψ−, in the free limit the fermionic

Hamiltonian becomes

P
−
fb = P

−
0 + P

−
hf

where, the helicity nonflip term

P
−
0 =

∫

dx
−
a
2
∑

x

[

m
2
η
†(x)

1

i∂+
η(x)

−
1

a2

∑

r

η
†(x)

∑

r

1

i∂+
[η(x+ar̂)−2η(x)+η(x−ar̂)

]

,

and the helicity flip term

p−
hf

=

∫

dx−a2
∑

x

1

a2

η†(x)
∑

r

(amσ̂r)
1

i∂+
[η(x + ar̂) − 2η(x) + η(x − ar̂)].

σ̂1 = σ2 and σ̂2 = −σ1. Sign of the linear mass term

changes if we switch the forward and backward

derivatives.
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First consider the Hamiltonian without the

helicity flip term. The eigenvalue equation is

M2 = m2 +
4

a2

∑

r

Sin2 kra

2

No doublers

Now, consider the full Hamiltonian including

the helicity flip term. The eigenvalue equation

now reads

M2 = m2 +
4

a2

∑

r

Sin2 kra

2
±

4m

a

√

∑

r

Sin4
kra

2

and is free from fermion doubling for physical

fermions, i.e., m < 1
a
, the ultraviolet cutoff.
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Eigenfunctions of lowest three states for the

case of no doubling. n=5
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Spin splitting of the ground state caused by the

spin dependent interaction as a function of n.
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Fermions with symmetric derivatives

With symmetric derivative for both ψ+ and

ψ−, in the free field limit the Hamiltonian

becomes

P−
sd(x) =

∫

dx−a2
∑

x

{

m2η†(x)
1

i∂+
η(x)

+
1

4a2

∑

r

[η†(x + ar̂) − η†(x− ar̂)]
1

i∂+

[η(x + ar̂) − η(x− ar̂)]

}

.

• Only next to nearest neighbor interactions

→ odd and even lattice points decouple.

• Effective lattice spacing 2a.

• Free particle dispersion relation for the

light front energy

k−
k

=
1

k+
[m2 +

1

a2

∑

r

sin2 kra].
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Because of the momentum bound of π
2a

,

doublers cannot arise from ka = π. However,

because of the decoupling of odd and even

lattices, one can get two zero transverse

momentum fermions one each from the two

sub-lattices. Thus, for two transverse

dimensions, we can get four zero transverse

momentum fermions as follows:

(1) even lattice points in x, even lattice points

in y,

(2) even lattice points in x, odd lattice points

in y,

(3) odd lattice points in x, even lattice points

in y,

(4) odd lattice points in x, odd lattice points in

y.

Thus we expect a four fold degeneracy of zero

transverse momentum fermions.
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Lowest four eigenvalues as a function of n.
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Doubling and helicity flip symmetry

In lattice gauge theory in the Euclidean or equal

time formalism, there has to be explicit chiral

symmetry breaking in the kinetic part of the action

or Hamiltonian to avoid fermion doubling.

Translated to the light front formalism, this would

then require helicity flip in the kinetic part since

chirality is helicity even for a massive fermion in

front form. A careful observation of all the

Hamiltonians that involve fermions on the light

front transverse lattice reveals that this is indeed

true. In particular, we draw attention to the

even-odd helicity flip transformation

η(x1, x2) → (σ̂1)
x1(σ̂2)

x2η(x1, x2).

Hamiltonian invariant under this transformation

shows fermion doubling and the Hamiltonian which

is not invariant under this transformation is free of

doublers.
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Effective Hamiltonian

Because of the nonlinear constraints U †U = 1,

det U = 1, it is highly nontrivial to perform

canonical quantization of the system.

Hence Bardeen and Pearson (1976) and

Bardeen, Pearson, and Rabinovicci (1980)

proposed to replace the nonlinear variables U

by linear variables M where M belongs to

GL(N, C), i.e., we replace 1
g
Ur(x) →Mr(x).

Once we replace U by M , many more terms are

allowed in the Lagrangian. Thus one needs to

add an effective potential Veff to the

Lagrangian density

Veff = −µ2Tr(M †M) + λ1Tr[(M
†M)2]

+λ2[det M +H.c] + . . . .

Gauge degrees of freedom massive !
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Residual gauge Invariance

The theory is invariant under the gauge

transformations η(x) → η′(x) = G†(x)η(x) and

Mr(x) →M ′
r(x) = G†(x)Mr(x)G(x + ar̂) where

G(x) = e−iT aθa(x).

For infinitesimal transformation,

G(x) ≈ 1 − iT aθa(x),

η(x) → η′(x) = η(x) + iT aθa(x)η(x),

Mr(x)pq →M ′
r(x)pq =

Mr(x)pq+iT a
plMr(x)lqθ

a(x)−iMr(x)plT
a
lqθ

a(x+ar̂).

In quantum theory the gauge transformations are

generated by the operator G = e
i

2

∑

y
Qa(y)θa(y)

with

Q
a(y) =

∫

dy
−

[

Tr

{

T
a
∑

r′

(

Mr′(y)i
↔

∂
+
M

†
r′(y)

+M†
r′(y − ar̂

′)i
↔

∂
+
Mr′(y − ar̂

′)
)}

−2η†(y)T a
η(y)

]

so that η(x) → η′(x) = Gη(x)G† and

Mr(x) →M ′
r(x) = GMr(x)G†.
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Zeroth order Approximation for Meson

Only q and q̄ Fock states.

Gauge invariance forces them to be on the same

transverse location.

1+1 dimensional ’t Hooft model: q and q̄

interacting via instantaneous gluon exchange and

self interactions →

Linear confinement in the longitudinal (x−)

direction.

Bound state equation:

M
2
ψ2(x) =

m2

x(1 − x)
ψ2(x)

− Cf
g2

π

∫

dy
ψ2(y) − ψ2(x)

(x− y)2

For computational purpose, use Discretized Light

Cone Quantization for the longitudinal direction,

−L ≤ x− ≤ +L and implement anti-periodic

boundary condition.

Dimensionless longitudinal momentum K = L
2π
P+.

Hamiltonian diagonalization yields not only the

spectra,

we also get the parton wavefunctions.

Compute structure function for weak to strong

couplings.
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Quark distribution function of the meson in the qq̄

approximation. mf = 0.3
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Quark distribution function of the meson in the qq̄

approximation. mf = 0.9



22

'

&

$

%

0 0.2 0.4 0.6 0.8 1

x

0

2

4

6

8

10

|ψ
|2

K = 10
K = 50
K = 98

Quark distribution function of the meson in the qq̄

approximation. mf = 3.0
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Summary

After a brief introduction to salient features of

light front dynamics (non-relativistic structure in

the transverse plane, kinematic boosts, triviality of

the vacuum, ...), motivated the study of QCD on a

transverse lattice.

Presence of constraint equation on the light front

allows different methods to put fermions on a

transverse lattice. We mentioned two approaches:

forward/backward derivatives and symmetric

derivatives. Presence or absence of doublers related

to a helicity-flip symmetry on the lattice.

Replacement of non-linear gauge variables by linear

variables with an added effective potential results

in a gauge invariant theory with massive variables.

Zeroth order approximation to meson already has

many interesting features.

Dipankar Chakrabarti, Asit K. De and A.H,

hep-th/0211145, to appear in Physical Review D.

Dipankar Chakrabarti, A.H and James P. Vary, work in

preparation.

Work in progress ...


