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Issues:

Motivated by the work of Rozowsky and Thorn, PRL 85, 1614
(2000).

Can one achieve Spontaneous Symmetry Breaking (SSB)
without zero momentum mode and with a finite Fock basis?
(SSB cannot occur in a system with finite degrees of Freedom)
Can one calculate the mass and other properties of the kink In a
finite Fock basis?

(In variational calculations, kink can be approximated by
coherent states)

Can one investigate the structure of low lying states in the
spectrum at strong coupling in the Fock language?

(Can one look for signatures of the onset of kink condensation
which is believed to be the mechanism for symmetry restoring
phase transition?)



Light Front (Cone) Quantization (1+1 dimensions)

Dirac, RMP (1949)

xt =x0+ x> xT “time”, x~ longitudinal coordinate
X2 — xtx™ [XZ (XO)Z . (X1)2]

kx= 3k~ + 3k~ x*

On mass shell particle k? = m? — energy k= =
no square root

longitudinal momentum k™ > 0

Longitudinal boost becomes scale transformation. Thus boost
becomes kinematical (non-relativistic).

In a relativistic theory, internal motion and the motion associated
with center of mass can be trivially separated.

_m
_|_

We start seeing the “ remarkably non-relativistic character of the
extreme relativistic limit ” (Bjorken)



Discrete Light Cone Quantization (DLCQ)

DLCQ as a practica approach to solve Quantum Field
Theory

H.-C. Pauli and S. J. Brodsky, Phys. Rev. D 32, 1993,
2001 (1985)

Also

C. B. Thorn, Phys. Rev. D 17, 1073 (19/8)

T. Maskawa and K. Yamawaki, Prog. Theo. Phys. 56,
270 (1976)

A. Casher, Phys. Rev. D 14, 452 (1976)

Exploit the semi-positive definiteness of longitudinal
momentum.

Compactify x . —L <x= < +L.

With Anti Periodic Boundary condition (APBC),

kKt — k=" n=135,_..



Two Dimensional ¢ theory

L agrangian density

L = 30H a0+ 3u2¢? — 50

The Hamiltonian density

P~ =-Lu2¢? + ¢

defines the Hamiltonian

P~ = fdx %~ = 2=H

where L defines our compact domain
—L <x <+L.

The longitudinal momentum operator Is
Pt =11 dx 0tpd*p=2"K

where K is the dimensionless longitudinal momentum
operator.



In DLCQ with Anti Periodic Boundary Condition, the
field expansion has the form

OX) = Ji In s [ane T ale T

Heren=3,3,....

(No zero momentum mode.)



DLCQ Hamiltonian
The normal ordered Hamiltonian

H=—p*yqsahan+
A 1 1 Ly
47t 2.k<l,m<n NZ Nz, \/Wakal anam5k+I mn T

1
477 Zkl<m<n N2

lmn
with

\/m [akalaman+anama|ak 5k|+m+n

J_ —m#n, | #m=n,
= /3, | =m=n,
Nk =1, k# 1,
=2, k=1.

(Simplest structure for the Hamiltonian.)



Diagonalization

The Lanczos method is used in ahighly scalable
algorithm allowing us to proceed to sufficiently high
values of K. All results presented here were obtained on
clusters of computers (< 30 processors) using the Many
Fermion Dynamics (MFD) code adapted to bosons



odd sector even sector
K | dimension | K | dimension
15.5 295 16 336
315| 12,839 | 32| 14,219
395| 61,316 | 40| 67,243
445 | 151518 || 45| 165,498
49.5| 358,000 ||50| 389,253
545 | 813,177 | 55| 880,962
60 | 1,928,175

Dimensionality of the Hamiltonian.




Spontaneous Symmetry Breaking:

Hamiltonian exhibits the ¢ — — @ symmetry:

Even and odd particle sectors are decoupled. In the absence of
Interaction (tachyonic theory), lowest excitations in the odd and
even particle sectors consist of the maximum number of particles
carrying the lowest allowed momentum —

system is unstable in the continuum limit.

@* interaction provides stability to the system. Thus, the
possibility arises that excitations in the even and odd particle

sectors become degenerate. (Rozowsky and Thorn)
Signal for SSB: look for degeneracy between even and odd sectors.

Denote the lowest excitations in the even and odd sectors by | e)
and | 0). Form the linear combinations,

| +a) =&+ |0).

Now it becomes possible for (+a | ¢ | £a) to be non-zero.



Eigenvalue
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Extraction of Kink Mass:

All the low-lying states have negative eigenvalues!

How to extract the particle masses?

Coherent State Variational Calculation (CSVC) (Rozowsky and
Thorn) shows how to: Fit the data for the eigenvalue of H to the
form

Ci+ Cz/K.

According to CSVC, C; Is the vacuum energy density and Cé/ % is
the Kink mass.

A vacuum energy soliton mass
class. DLCQ class. | semi-class. | DLCQ
1.0 | -18.85 | -18.73 £0.05 | 5.66 5.19 5.3 +£0.2




DLCQK =55
DLCQK =545
Constr. Var. <K> =55
Unconstr. Var.
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Excited States;

In the semi-classical analysis, the lowest states, in order of
excitation, are kink, excited kink, kink plus boson, and the
continuum states.

Kink state yields a characteristic parton distribution which peaks
at the lowest momentum mode available.

The next excitation Is an excited kink for which also we expect
and find a smooth distribution function which in addition to the
sharp peak at lowest allowed momentum exhibits a broad and
smooth peak.

The third and higher excitations are expected to be kink plus
boson states. For a free kink plus boson state, we expect the

minimum energy configuration with Xposon = mkirTTr?Eomn'




Number Density of Excited States

a) x versus n, the half-odd integer representing light front momentum with
APBC, for the lowest nine excitations for K =50, A = 1. (b) Same as in (a)
but showing the region from n = 6 to 18 in detail.
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Fourier Transform of the Kink Form Factor

What is the observable in quantum field theory that is
related to the classical kink solution?

According to Goldstone and Jackiw, the Fourier
transform of the form factor of the lowest excitation, in
the weak coupling (static) limit, corresponds to the
classical kink solution. Let | K) and | K”) denote this
state with momenta K and K’. In the continuum theory,

2 datexp{—satal(K' [ o(x7) | K) = @(x” —a).

In DLCQ, we diagonalize the Hamiltonian for a given

K = =P For the computation of the form factor, we
need the same state at different K values since
K'=K+q.
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Extraction of the condensate (| ¢ |):

How Is the symmetry breakdown communicated to a system in
the Infinite Momentum Frame if the vacuum and the system
become decoupled?

“Thus, however fast you run, you can’t outrun the long arm of
the vacuum”

Kogut and Susskind, PR 8, 75 (1973).

In our calculations, we haven’t bothered about the vacuum state
at all.

However, we can extract the value of the vacuum condensate.
Drawing on the connection between the classical kink solution
and the Fourier Transform of the kink form factor (kink profile),
we extract (| @ |) as the asymptotic (x~ = 41 in units of L)
Intercept. For A = 1.0, the intercept is 2.4 which Is very close to
the classical value.



Transition in the spectrum at strong coupling

At weak coupling, the values of observables extracted
are close to classical or semi-classical results. Aswe
Increase the coupling, we observe drastic departure
from semi-classical results. The lowest two energy
levels cross each other.

To gain further understanding of the nature of levels
that cross, we examine the behaviour of two other
observables:

1) (| fdx @ @P(x) )

2) The number density

3) Fourier Transform of the form factor.



Mass® gap as afunction of A for K=55. All calculated
results are connected by straight line segmentsto guide

the eye.
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(1] @? | 1) (short hand notation for the expectation value of the
integral of the normal ordered @ operator) as a function of A
and selected K values. For comparison we have also shown

2
OF asscal = 65 With p2 = 1.
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(| @ ) as a function of A for K=55 for the lowest two excitations.
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(| @?|) as a function of A for K=55 for the lowest five excitations. The pattern
of transitions correspond to 5 states falling with increasing A and crossing the
5 lowest states, thus replacing them and becoming the new 5 lowest states. At
selected values of A, the character of the lowest states is indicated on the
figure with the top level of each column signifying the nature of the lowest
state. Successive excited states are signified by the labels proceeding down
the column. The letter ‘K" represents ‘kink" while ‘KAK" represents
‘kink-antikink-kink".
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(a) x versus n, the half-odd integer representing light front momentum with
APBC, for the lowest four excitations for K =55, A =5. (b)
Kink-antikink-kink parton density in unconstrained variational calculation for
A=5. ) (b)

Unconstrained Variational
A=5.0
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Kink-antikink-kink Profiles

Fourier Transform of the form factor of the lowest excitation at
A=5, K = 32. The figure legend indicates the number of
adjoining momentum transfer terms (sets) included in the
summation.
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Critical Coupling:

Critical coupling for level crossing as a function of =, and an indication of the
critical coupling in the continuum limit
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Physical Implication of the Transition:

In the two-dimensional Ising model, physical mechanism for the
symmetry restoring phase transition is the phenomena of kink
condensation.

It iIs known that at strong coupling, the cpgL theory undergoes a
symmetry restoring phase transition.

We have demonstrated that in this theory, at strong coupling, It is
energetically favourable for a dominantly kink-antikink-kink
configuration to be the lowest excitation rather than a kink
configuration.

At still higher coupling we have observed additional level
crossings for the lowest state for both PBC and APBC.

In the light of all our observations, we interpret the observed
level crossing presented here as the onset of kink condensation
which leads to the restoration of symmetry.



Summary

Ab initio results for kink mass and other observables:
number density, Fourier Transform of the form factor,
vacuum condensate (without the vacuum state).

Signals for a transition in the spectrum of lowest excitations.

Physical implication —
Onset of kink condensation?

We have given one more demonstration of the utility of light
front Hamiltonian approach to Quantum Field Theory.
(Meson and glueball spectra in transverse lattice QCD,
Supersymmetric DLCQ, etc etc.)
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