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B582, 196 (2004), hep-th/ hep-th/0309263.

Dipankar Chakrabarti, A.H, James P. Vary, hep-th/0504094, to appear in PRD.

SLAC Theory Seminar

June 8 2005

Topological sector of two dimensional φ 4 theory in Discrete Light Cone Quantization – p. 1/30



Plan
√

Issues
√

Discrete Light Cone (Front) Quantization (DLCQ)
√

DLCQ Hamiltonian for φ 4
2

√
Spectrum - Degeneracy of States

√
Extraction of Kink Mass

√
Other Observables

√
A Transition in the Spectrum at Strong Coupling

√
Other Signals for Transition

√
Implication

√
Summary

Topological sector of two dimensional φ 4 theory in Discrete Light Cone Quantization – p. 2/30



Issues:

Motivated by the work of Rozowsky and Thorn, PRL 85, 1614

(2000).

Can one achieve Spontaneous Symmetry Breaking (SSB)

without zero momentum mode and with a finite Fock basis?

(SSB cannot occur in a system with finite degrees of Freedom)

Can one calculate the mass and other properties of the kink in a

finite Fock basis?

(In variational calculations, kink can be approximated by

coherent states)

Can one investigate the structure of low lying states in the

spectrum at strong coupling in the Fock language?

(Can one look for signatures of the onset of kink condensation

which is believed to be the mechanism for symmetry restoring

phase transition?)
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Light Front (Cone) Quantization (1+1 dimensions)
Dirac, RMP (1949)
x± = x0 ± x3 x+ “ time ”, x− longitudinal coordinate

x2 = x+x− [x2 = (x0)2 − (x1)2]

k.x = 1
2k+x−+ 1

2k−x+

On mass shell particle k2 = m2 → energy k− = m2

k+

no square root

longitudinal momentum k+ ≥ 0

Longitudinal boost becomes scale transformation. Thus boost

becomes kinematical (non-relativistic).

In a relativistic theory, internal motion and the motion associated

with center of mass can be trivially separated.

We start seeing the “ remarkably non-relativistic character of the

extreme relativistic limit ” (Bjorken)
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Discrete Light Cone Quantization (DLCQ)

DLCQ as a practical approach to solve Quantum Field
Theory
H.-C. Pauli and S. J. Brodsky, Phys. Rev. D 32, 1993,
2001 (1985)
Also
C. B. Thorn, Phys. Rev. D 17, 1073 (1978)
T. Maskawa and K. Yamawaki, Prog. Theo. Phys. 56,
270 (1976)
A. Casher, Phys. Rev. D 14, 452 (1976)
Exploit the semi-positive definiteness of longitudinal
momentum.
Compactify x−: −L ≤ x− ≤ +L.
With Anti Periodic Boundary condition (APBC),
k+ → k+

n = nπ
L , n = 1,3,5, . . .
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Two Dimensional φ 4
2 theory

Lagrangian density
L = 1

2∂ µφ∂µφ + 1
2 µ2φ 2 − λ

4!φ
4.

The Hamiltonian density
P− = −1

2 µ2φ 2 + λ
4!φ

4.
defines the Hamiltonian
P− =

∫

dx−P− ≡ L
2π H

where L defines our compact domain
−L ≤ x− ≤ +L.
The longitudinal momentum operator is
P+ = 1

2

∫ +L
−L dx−∂ +φ∂ +φ ≡ 2π

L K
where K is the dimensionless longitudinal momentum
operator.
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In DLCQ with Anti Periodic Boundary Condition, the
field expansion has the form

φ(x−) = 1√
4π ∑n

1√
n

[

ane−i nπ
L x− +a†

nei nπ
L x−

]

.

Here n = 1
2 ,

3
2 , . . . .

(No zero momentum mode.)
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DLCQ Hamiltonian

The normal ordered Hamiltonian

H = −µ2 ∑n
1
na†

nan +
λ
4π ∑k≤l,m≤n

1
N2

kl

1
N2

mn

1√
klmn

a†
ka†

l anamδk+l,m+n +

λ
4π ∑k,l≤m≤n

1
N2

lmn

1√
klmn

[

a†
kalaman +a†

na†
ma†

l ak

]

δk,l+m+n

with
Nlmn = 1, l 6= m 6= n,

=
√

2!, l = m 6= n, l 6= m = n,
=
√

3!, l = m = n,
Nkl = 1, k 6= l,

=
√

2!, k = l.
(Simplest structure for the Hamiltonian.)
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Diagonalization

The Lanczos method is used in a highly scalable
algorithm allowing us to proceed to sufficiently high
values of K. All results presented here were obtained on
clusters of computers (< 30 processors) using the Many
Fermion Dynamics (MFD) code adapted to bosons
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odd sector even sector

K dimension K dimension

15.5 295 16 336

31.5 12,839 32 14,219

39.5 61,316 40 67,243

44.5 151,518 45 165,498

49.5 358,000 50 389,253

54.5 813,177 55 880,962

60 1,928,175

Dimensionality of the Hamiltonian.
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Spontaneous Symmetry Breaking:

Hamiltonian exhibits the φ →−φ symmetry:

Even and odd particle sectors are decoupled. In the absence of

interaction (tachyonic theory), lowest excitations in the odd and

even particle sectors consist of the maximum number of particles

carrying the lowest allowed momentum →
system is unstable in the continuum limit.

φ 4 interaction provides stability to the system. Thus, the

possibility arises that excitations in the even and odd particle

sectors become degenerate. (Rozowsky and Thorn)
Signal for SSB: look for degeneracy between even and odd sectors.

Denote the lowest excitations in the even and odd sectors by | e〉
and | o〉. Form the linear combinations,

| ±α〉 =| e〉± | o〉.
Now it becomes possible for 〈±α | φ | ±α〉 to be non-zero.
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Extraction of Kink Mass:

All the low-lying states have negative eigenvalues!

How to extract the particle masses?

Coherent State Variational Calculation (CSVC) (Rozowsky and

Thorn) shows how to: Fit the data for the eigenvalue of H to the

form

C1 +C2/K.

According to CSVC, C1 is the vacuum energy density and C1/2
2 is

the kink mass.

λ vacuum energy soliton mass

class. DLCQ class. semi-class. DLCQ

1.0 -18.85 -18.73 ±0.05 5.66 5.19 5.3 ±0.2
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Number density for the kink state
χ(x) = 〈| a†(x)a(x) |〉 x = n

K
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Excited States:

In the semi-classical analysis, the lowest states, in order of

excitation, are kink, excited kink, kink plus boson, and the

continuum states.

Kink state yields a characteristic parton distribution which peaks

at the lowest momentum mode available.

The next excitation is an excited kink for which also we expect

and find a smooth distribution function which in addition to the

sharp peak at lowest allowed momentum exhibits a broad and

smooth peak.

The third and higher excitations are expected to be kink plus

boson states. For a free kink plus boson state, we expect the

minimum energy configuration with xboson = mboson
mkink+mboson

.
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Number Density of Excited States
a) χ versus n, the half-odd integer representing light front momentum with

APBC, for the lowest nine excitations for K = 50, λ = 1. (b) Same as in (a)

but showing the region from n = 6 to 18 in detail.

(a) (b)
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Fourier Transform of the Kink Form Factor

What is the observable in quantum field theory that is
related to the classical kink solution?
According to Goldstone and Jackiw, the Fourier
transform of the form factor of the lowest excitation, in
the weak coupling (static) limit, corresponds to the
classical kink solution. Let | K〉 and | K′〉 denote this
state with momenta K and K′. In the continuum theory,

∫ +∞
−∞ dq+exp{− i

2q+a}〈K′ | φ(x−) | K〉 = φc(x−−a).

In DLCQ, we diagonalize the Hamiltonian for a given
K = L

2π P+. For the computation of the form factor, we
need the same state at different K values since
K′ = K +q.
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Extraction of the condensate 〈| φ |〉:
How is the symmetry breakdown communicated to a system in

the Infinite Momentum Frame if the vacuum and the system

become decoupled?

“Thus, however fast you run, you can’t outrun the long arm of

the vacuum”

Kogut and Susskind, PR 8, 75 (1973).

In our calculations, we haven’t bothered about the vacuum state

at all.

However, we can extract the value of the vacuum condensate.

Drawing on the connection between the classical kink solution

and the Fourier Transform of the kink form factor (kink profile),

we extract 〈| φ |〉 as the asymptotic (x− = ±1 in units of L)

intercept. For λ = 1.0, the intercept is 2.4 which is very close to

the classical value.
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Transition in the spectrum at strong coupling

At weak coupling, the values of observables extracted
are close to classical or semi-classical results. As we
increase the coupling, we observe drastic departure
from semi-classical results. The lowest two energy
levels cross each other.
To gain further understanding of the nature of levels
that cross, we examine the behaviour of two other
observables:
1) 〈| ∫ dx− : φ 2(x−) :|〉
2) The number density
3) Fourier Transform of the form factor.

Topological sector of two dimensional φ 4 theory in Discrete Light Cone Quantization – p. 20/30



Mass2 gap as a function of λ for K=55. All calculated
results are connected by straight line segments to guide
the eye.
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Mass-squared gaps for K = 60.
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〈1 | φ 2 | 1〉 (short hand notation for the expectation value of the

integral of the normal ordered φ 2 operator) as a function of λ
and selected K values. For comparison we have also shown

φ 2
classical = 6 µ2

λ with µ2 = 1.
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〈| φ 2 |〉 as a function of λ for K=55 for the lowest two excitations.
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〈| φ 2 |〉 as a function of λ for K=55 for the lowest five excitations. The pattern

of transitions correspond to 5 states falling with increasing λ and crossing the

5 lowest states, thus replacing them and becoming the new 5 lowest states. At

selected values of λ , the character of the lowest states is indicated on the

figure with the top level of each column signifying the nature of the lowest

state. Successive excited states are signified by the labels proceeding down

the column. The letter ‘K" represents ‘kink" while ‘KAK" represents

‘kink-antikink-kink".
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(a) χ versus n, the half-odd integer representing light front momentum with

APBC, for the lowest four excitations for K = 55, λ = 5. (b)

Kink-antikink-kink parton density in unconstrained variational calculation for

λ=5. (a) (b)
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Kink-antikink-kink Profiles

Fourier Transform of the form factor of the lowest excitation at

λ=5, K = 32. The figure legend indicates the number of

adjoining momentum transfer terms (sets) included in the

summation.
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Critical Coupling:
Critical coupling for level crossing as a function of 1

K , and an indication of the

critical coupling in the continuum limit
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Physical Implication of the Transition:

In the two-dimensional Ising model, physical mechanism for the

symmetry restoring phase transition is the phenomena of kink

condensation.

It is known that at strong coupling, the φ 4
2 theory undergoes a

symmetry restoring phase transition.

We have demonstrated that in this theory, at strong coupling, it is

energetically favourable for a dominantly kink-antikink-kink

configuration to be the lowest excitation rather than a kink

configuration.

At still higher coupling we have observed additional level

crossings for the lowest state for both PBC and APBC.

In the light of all our observations, we interpret the observed

level crossing presented here as the onset of kink condensation

which leads to the restoration of symmetry.
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Summary
➪ Ab initio results for kink mass and other observables:

number density, Fourier Transform of the form factor,

vacuum condensate (without the vacuum state).

➪ Signals for a transition in the spectrum of lowest excitations.

➪ Physical implication –

Onset of kink condensation?

➪ We have given one more demonstration of the utility of light

front Hamiltonian approach to Quantum Field Theory.

(Meson and glueball spectra in transverse lattice QCD,

Supersymmetric DLCQ, etc etc.)
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