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I Theoretical understanding of polarized deep inelastic
scattering

I Kink in discrete light front quantization

I Topological susceptibility and pion properties in Lattice QCD
with Wilson quarks.



Theoretical understanding of polarized
deep inelastic scattering



An important tool to probe strong interaction physics: Deep
inelastic scattering
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P Target four momentum
q Virtual photon four momentum
q = (q0,q), q2 < 0
Let Q2 = −q2, ν = P.q

Deep inelastic limit: Q2, ν →∞ such that Q2

2ν is finite

Define x = Q2

2ν , Bjorken Scaling Variable (0 < x < 1).
Differential Cross Section ∝ W (x,Q2, proton structure function.
Extracted from experimental data.
Tells us about the structure of the proton in detail.



Unpolarized case: Structure functions F2 and FL. F2 dominant,
leading part of FL power suppressed.
Polarized case: Longitudinally polarized lepton

Longitudinally Transversely
polarized polarized
target: target:
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g1(x,Q2): gT (x,Q2):

Longitudinal Transverse
polarized polarized
structure function structure function



Measurement of F2 structure function in the late sixties lead to the
discovery of quarks and eventually lead to the discovery of
asymptotic freedom and the establishment of Quantum
Chromodynamics as the underlying theory of strong interactions.

Measurement of the g1 structure function in the late eighties lead
to the “proton spin crisis (mystery, puzzle)”.

Phys.Lett. B206 (1988) 364

A recent news:
Scientific American, Jul 21, 2014
Proton Spin Mystery Gains a New Clue

Recent Review:
The angular momentum controversy: What’s it all about and does
it matter? E. Leader and C. Lorce, Phys. Rept. 541 (2014)
163-248.



Theoretical Tool I: Appropriate formalism
Nucleon is a relativistic system. What are the possible forms of
relativistic dynamics?
Forms of Relativistic Dynamics
P. A. M. Dirac, RMP (1949)

“The theory of a dynamical system is built up in terms of ten
dynamical variables each of which is defined with respect to a
system of coordinates in space-time.”

“Dynamical variables change when the system of coordinates with
respect to which they are defined changes ... .”

The ten variables are Hamiltonian, Momenta (3), Rotations (3)
and Boosts (3).
In the familiar form of dynamics, Momenta and Rotations are
kinematical whereas Hamiltonian and Boosts are dynamical
(depends on the interaction).



Light Front Dynamics Dirac, RMP (!949)

xµ = (x0, x1, x2, x3) with
x2 = (x0)2−(x1)2−(x2)2−(x3)2.
x± = x0 ± x3, x⊥ = (x1, x2)
Define x+ “time”,
x− longitudinal coordinate
x2 = x+x− − (x⊥)2

k.x = 1
2k

+x−+ 1
2k
−x+− k⊥ ·x⊥

Longitudinal momentum
k+ = k0 + k3

For an on mass shell particle k2 =

m2 → energy k− = (k⊥)2+m2

k+
.

Dependence on k⊥ just like in the
nonrelativistic dispersion relation
(no square root)!!



Longitudinal boost becomes scaling, transverse boosts become
Galilean boosts. Thus boost become kinematical (non-relativistic).

In a relativistic theory, internal motion and the motion associated
with center of mass can be separated ⇒ Can construct boost
invariant wave functions.

Furthermore, the relativistic fermion is described by a two
component field.

We start seeing the “remarkably non-relativistic character of the
extreme relativistic limit” (Bjorken)

Theoretical Tool II: Study of the high energy (q− →∞) limit
of the appropriate scattering amplitude

Detailed calculations ⇒ structure functions in deep inelastic
scattering are equal light front time correlation functions in
relativistic physics just as structure functions in quasi elastic
scattering are equal time correlation functions in non-relativistic
physics.



Structure functions in deep inelastic scattering as equal light
front time correlation functions

F2(x)
x = 1

4πP+

∫
dη e−iηx〈PS|

[
ψ(ξ−)γ+ψ(0) + h.c.

]
|PS〉

FL(x) = P+

4π

(
2x
Q

)2 ∫
dη e−iηx〈PS|

[
ψ(ξ−)γ−ψ(0) + h.c.

]
|PS〉

g1(x) = 1
8πS+

∫
dη e−iηx〈PS|

[
ψ(ξ−)γ+γ5ψ(0) + h.c.

]
|PS〉

gT (x) = 1
8πM

∫
dη e−iηx × 〈PS1|

[
ψ(ξ−)γ1γ5ψ(0) + h.c.

]
|PS1〉

Here η = 1
2P

+ξ−, Pµ and Sµ are the four momentum and the
polarization vector of the target.

(1) Deep Inelastic Structure Functions in Light-Front QCD: A
Unified Description of Perturbative and Nonperturbative
Dynamics, A. H., Rajen Kundu, and Wei-Min Zhang, Phys. Rev.
D 59 , 094012 (1999). (2) Deep Inelastic Structure Functions in
Light-Front QCD: Radiative Corrections, A. H., Rajen Kundu, and
Wei-Min Zhang, Phys. Rev. D 59, 094013 (1999).



Resolving the proton spin puzzle and more . . .

1) On Orbital Angular Momentum in Deep Inelastic Scattering, A.
H and Rajen Kundu, Phys. Rev. D 59, 116013 (1999).

2) Transverse Spin in QCD and Transverse Polarized Deep Inelastic
Scattering, A. H., Asmita Mukherjee and Raghunath Ratabole,
Phys. Lett. B 476, 471 (2000).

3) Transverse Spin in QCD: Radiative Corrections, A. H., Asmita
Mukherjee, Raghunath Ratabole, Phys. Rev. D 63 045006 (2001).

Postcript:

4) Comment on ”Proton Spin Structure from Measurable Parton
Distributions”, A. H., Rajen Kundu, Asmita Mukherjee and
Raghunath Ratabole, Phys. Rev. Lett. 111 039102 (2013)

5) On transverse spin sum rules, A. H., Rajen Kundu and Asmita
Mukherjee, Phys. Lett. B728 63 (2014)



Theoretical Tool III: Poincare generators in light front QCD
In terms of the symmetric, gauge invariant energy momentum

tensor Θµν = 1
2ψ
[
γµiDν + γνiDµ

]
ψ − FµλaF νaλ

− gµν
[
− 1

4(Fλσa)
2 + ψ(γλiDλ −m)ψ

]
, with

iDµ = 1
2

↔
i∂µ +gAµ, Fµλa = ∂µAλa − ∂λAµa + gfabcAµbAλc,

Momenta Pµ = 1
2

∫
dx−d2x⊥Θ+µ,

Generalized angular momenta
Mµν = 1

2

∫
dx−d2x⊥ [xµΘ+ν − xνΘ+µ] .

P− is the Hamiltonian, P+ longitudinal momentum, P i transverse
Momenta, M+− = 2K3 and M+i = Ei are boost operators and
M12 = J3 and M−i = F i are the rotation operators. Gauge of
choice: Light front gauge A+ = 0.



Spin Operators

By means of the Pauli-Lubanski spin operators
Wµ = −1

2ε
µνρσMνρPσ with ε+−12 = −2, one constructs the

longitudinal and transverse spin operators J 3 and J i.
The helicity operator J 3 = W+

P+ = J3 + 1
P+ (E1P 2 − E2P 1)

For a massive particle, the transverse spin operators J i in light
front theory are given in terms of Poincare generators by
MJ i = W i − P iJ 3 (i = 1, 2)

= εij
(

1
2F

jP+ − 1
2E

jP− +K3P j
)
− P iJ 3.

The interaction dependence of J i arises from F i which depends on
both center of mass and internal variables. The rest of the terms
in J i serves to remove the center of mass motion effects from F i.



Relevance to Deep inelastic scattering
(Resolution of the proton spin puzzle):
After all the dust settles, the longitudinal spin operator
J 3 = J 3

q(i) + J 3
q(o) + J 3

g(i) + J 3
g(o). The matrix element in a

longitudinally polarized nucleon state gives rise to the nucleon
helicity sum rule. Integrals of quark (g1) and gluon distribution
functions that appear in longitudinally polarized deep inelastic
scattering are proportional to the matrix elements of J 3

q(i) and J 3
g(i)

in a longitudinally polarized nucleon state. [Scale Dependence]
Transverse spin operators J i, (i = 1, 2) can also be written as the
sum of three parts, J iI which arises from the fermionic part, and
J iII which arises from the bosonic part of the energy momentum
tensor and J iIII whose integrand has explicit coordinate
dependence.
Integrals of quark (gT ) and gluon distribution functions that
appear in transversely polarized deep inelastic scattering are
proportional to the matrix elements of J iII and J iIII in a
transversely polarized nucleon state.



Kink in discrete light front
quantization



Kink solution in two dimensional φ4 theory

R. Rajaraman, Solitons and Instantons
Lagrangian density L = 1

2∂
µφ∂µφ+ 1

2m
2φ2 − λ

4φ
4.

Nonperturbative classical solution (kink)
φ(x) = ±

√
m
λ tanh[( m√

2
)(x− x0)]

Topological charge Q =
√
λ

2m [φ(x = +∞)− φ(x = −∞)] associated

with the conserved current jµ =
√
λ

2m ε
µν∂νφ where εµν is the

antisymmetric tensor.

All finite energy solutions fall into four topological sectors:
(−
√

m
λ ,
√

m
λ ), (

√
m
λ −

√
m
λ ), (

√
m
λ ,
√

m
λ ) and (−

√
m
λ ,−

√
m
λ ).



Topological Sector of Two Dimensional φ4 in Discrete
Light Front Quantization (DLFQ)

Using DLFQ, masses of the lowest few excitations, parton
distribution functions and Fourier transforms of the form factor are
calculated. Also vacuum energy density and the value of the
condensate.

Dipankar Chakrabarti, AH, Lubomir Martinovic and James P. Vary,
Kinks in Discrete Light Cone Quantization, Phys. Lett. B 582,
196 (2004).

Lagrangian density L = 1
2∂

µφ∂µφ− 1
2µ

2φ2 − λ
4!φ

4.
The longitudinal momentum operator
P+ = 1

2

∫ +L
−L dx

−∂+φ∂+φ ≡ 2π
L K where K is the dimensionless

longitudinal momentum operator and

Hamiltonian P− =
∫
dx−

{
1
2µ

2φ2 + λ
4!φ

4
}
≡ L

2πH where L
defines our compact domain −L ≤ x− ≤ +L.



Mass operator M2 = P+P− = KH

odd sector even sector

K dimension K dimension

15.5 295 16 336
31.5 12839 32 14219
39.5 61316 40 67243
44.5 151518 45 165498
49.5 358000 50 389253
54.5 813177 55 880962

Dimensionality of the Hamiltonian matrix in odd and even particle
sectors. (Anti periodic boundary condition)



The number density of bosons with momentum fraction x = j/K
(the parton distribution function)
χ(x) = 〈kink | aj†aj | kink〉
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J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486 (1975).∫ +∞
−∞ dq+exp{− i

2q
+a}〈K ′ | Φ(x−) | K〉 = φc(x

− − a).
q+ = K ′ −K.
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Topological susceptibility and pion
properties in Lattice QCD with Wilson
quarks



Lattice Quantum Chromodynamics
K.G. Wilson, Confinement of Quarks, Phys. Rev. D (1974)
A.M. Polyakov, Compact Gauge Fields and the Infrared
Catastrophe, Phys. Lett. B (1975)
Jan Smit (Unpublished)

Discrete Space-Time Euclidean Lattice

Short distance (UV) Cut-off (lattice spacing a)

Long distance (IR) Cut-off (box length L)

Path integral quantization → finite dimensional
integrals over the space of fields

〈O〉 = 1
Z

∫
Dφ exp [−S[φ]/~] O

Z =
∫
Dφ exp [−S[φ]/~]

Formally equivalent to Classical Statistical Mechanics in 4
dimensions: T → ~ (Thermal fluctuations ↔ Quantum
fluctuations)



Free Fermions on a Lattice

Free fermion Dirac action in continuum Euclidean space
(Hermitian γ matrices)

ScontF =
∫
d4x ψ(x) (γµ∂µ +m)ψ(x)

Transcribe it on to the discrete space-time lattice

SF = 1
2a

4
∑

x,µ ψxγµ

[
ψx+µ−ψx−µ

a

]
+ a4 m

∑
x ψxψx

16 degenerate fermions: Fermion Doubling

Simplest remedy for fermion doubling: Wilson Fermions

To the original action, add momentum dependent irrelevant mass
term:

SW = − r
2 a

4
∑

x a ψx�ψx = r
2 a

4
∑

x,µ a
2ψxψx−ψxψx+µ−ψxψx−µ

a2

Doubler masses →∞ as a→ 0

SW violates chiral symmetry

In interacting theory, fermion mass receives additive
renormalization



Introducing gauge fields on the lattice
Products of matter fields ψxψx+µ not gauge invariant

because ψx → gxψx, ψx → ψxg
†
x

g†xgx+µ 6= 1, gx ∈ G
Needs objects which span finite distances

Lattice gauge fields (link variables) Uxµ placed on the link between
the sites of matter fields Uxµ ∈ G
Gauge Transformation: Uxµ → gxUxµg

†
x+µ

Now, ψxUxµψx+µ Gauge invariant.

Kinetic term for the gauge fields: Gauge invariant objects
constructed out of link fields



U

1

U

U34
3

2

4

12
U

23
41

Trace UP = Trace (U12U23U34U41)
Gauge Invariant

Wilson action for Lattice QCD

SQCD = SG[U ] + SF [ψ,ψ, U ] where,
SG[U ] = β

∑[
1− 1

3 Re Trace UP
]

and SF [ψ,ψ, U ] =
∑

x,y ψxMxyψy with

Mxy = δxy − κ
[
(r − γµ)Ux,µ + (r + γµ)U †x−µ,µ

]
The parameters of the theory are the gauge coupling, β = 6/g2

and the Wilson hopping coefficient κ = 1
2(m+4) with r = 1 and

m = am is the dimensionless bare quark mass.

Fermion field has been re-scaled: a3/2√
2κ
ψ → ψ



After rescaling the dimensionful parameters and fields with
appropriate powers of the lattice spacing a, lattice spacing
disappears from the lattice action.

Parameter in the lattice gauge action β = 6
g2

where g is the

continuum gauge coupling, g = g(a). Due to asymptotic freedom,
g(a)→ 0 as a→ 0. → β needs to be as large as possible.

Ideal Lattice scale hierarchy:

L−1 � mq � mhadron � a−1

Mass scale in the real world: mq = mu ∼ md ∼ 5 MeV
mnucleon ∼ 1000 MeV

→ beyond the scope of most of lattice simulation

Extrapolation of Lattice data to the chiral region necessary

For pure gauge:
β=6.21, 24X24X24X48 lattice, a = 0.067 fm, 1/a = 2.9 GeV, size
of a gauge configuration 380 MB
β=6.71, 64X64X64X128 lattice, a = 0.034 fm, 1/a = 5.8 GeV,
size of a gauge configuration 19 GB.



In the early days of QCD, it was realized that the noninvariance of
the QCD action under the chiral transformations
ψ(x)→ ψ′(x) = eiγ5α(x)ψ(x), ψ(x)→ ψ

′
(x) = ψ(x)eiγ5α(x) lead

to an anomalous Ward Identity
∂µJ5µ(x) = 2mψ(x)γ5ψ(x)− 1

16π2 εµνρλ trace Fµν(x)Fρλ(x).

In those days it was also realized that Yang-Mills theory in
Euclidean space possess classical solutions that have finite action,
which were called instantons. An instanton carries a conserved
topological charge
Q =

∫
d4x q(x) = 1

32π2

∫
d4x εµνρλ trace Fµν(x)Fρλ(x).

Q is also known as the winding number.

It is not possible to continuously deform a field configuration with
one winding number in to one of a different winding number while
maintaining the finiteness of the action.

However, Q is not an observable and the topological structure of
the gauge fields is quantitatively summarized by the Topological
Susceptibility χ =

∫
d4x 〈q(x)q(0)〉. According to a chiral Ward

Identity, in QCD χ vanishes with vanishing quark mass.



Also, the low energy effective theory of QCD, namely chiral
perturbation theory, predicts the behaviour of the square of the
pion mass with respect to the quark mass.

Can Wilson fermion, with modest (human and computational)
resources, fulfill the expectations of continuum QCD, regarding the
chiral behaviour?

Topological susceptibility in Lattice QCD with unimproved Wilson
fermions, Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A.
H., Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar, Phys. Lett.
B707 228 (2012).

Pion and nucleon in two flavour QCD with unimproved Wilson
fermion, Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A.
H., Jyotirmoy Maiti, Santanu Mondal and Anwesa Sarkar, Nucl.
Phys. B 871 (2013) 82.
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Behaviour of the pion mass squared versus the quark mass
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In SU(2) χPT at NLO, the quark mass (r0mq) dependence of

(r0mπ)2 is given by (r0mπ)2 = 2r2
0mqB

[
1− mqB

16π2F 2 ln
Λ2
3

2mqB

]
where F is the chiral limit of the pion decay constant and B and
Λ3 are low energy constants.



Behaviour of the pion decay constant versus the quark mass
〈0 | Aµ(0) | π(p)〉 =

√
2 Fπpµ where Aµ = qγµγ5q.
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The quark mass dependence of the pion decay constant r0Fπ in

NLO χPT is given by r0Fπ = r0F
[
1 +

mqB
8π2F 2 ln

Λ2
4

2mqB

]
where Λ4 is

another low energy constant.



To summarize, We have shown

I Quantum Field Theoretical tools based on Light Front
Dynamics can be used to understand the polarized deep
inelastic scattering structure functions in the context of the
proton spin mystery.

I Properties of Kink, especially the parton distribution and the
elastic form factor can be calculated in discrete light front
quantization

I Expected behaviours of topological susceptibility and pion
properties can be reproduced in Lattice QCD with unimproved
Wilson quarks.

A big Thank You to all my collaborators and You, the
audience!


