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CHAPTER 1

Introduction

Speaking in 2004, there are many excellent introductions to Renormalization Group (RG). First
of all, there is the popular article by K.G. Wilson [1] and four technical review articles [2, 3, 4, 5]
on the so-called Wilson RG. There is the article by Weinberg [6] on perturbative RG. Almost all
modern quantum field theory books have at least one chapter on perturbative RG, for example,
Cheng and Li [7]. Text books on Quantum Chromodynamics also unavoidably discuss RG in
detail, for example, Muta [8]. Older text books on quantum field theory discuss perturbative RG
of Gell-Mann-Low [9] variety. Modern books do discuss the difference between perturbative RG
and Wilson RG. In this regard, one would especially mention Peskin and Schroder [10], Weinberg
[11] and Zee [12]. Our treatment of RG in the context of broken scale invariance follows Wilson
which also appears in the textbook of Pokorski [13]. (It goes without saying that any omission of
relevant references here is just a display of my ignorance.)

There are also textbooks specialized to RG. For RG in the context of the so called ε - expansion
the text book by Amit [14] may be consulted. For conceptual clarity on topics like anomalous
dimension, application of RG to classical phenomena, etc. the book by Goldenfeld [15] is highly
recommended.

Then why another set of lecture notes on perturbative RG? Definitely I cannot claim any orig-
inality for any of the topics discussed here. The only novelty is in the particular selection of
materials (all taken from the research papers, review articles and books) and the order of presen-
tation. The hope is that after going through the elementary materials collected here, the reader
gets enough motivation to plunge into the original articles and cited books. Then the reader may
eventually resolve all the seemingly contradictory statements on RG by the Masters in the field.
(A sample of this is accessible on the internet at

http://www.saha.ac.in/theory/a.harindranath/RG-fun.html

for browsing pleasure.) Hopefully this justifies yet another set of lecture notes on perturbative
Renormalization Group. These notes are based on four lectures delivered in the Theory Group,
SINP, Kolkata in the period December 2003 - January 2004. I thank the participants for asking
probing questions. As a result, the written version is much better than the spoken version. I thank
Dipankar Chakrabarti, Ramesh Babu Thayyullathil and Santanu Mondal for careful reading of the
previous versions of the manuscript and providing typographical corrections.
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CHAPTER 2

Scale Invariance: Canonical Considerations

2.1 Scale symmetry in classical mechanics

A discussion of scale symmetry in classical mechanics can be found in Ref. [16, 17]. In this
section, we follow these references.

For simplicity, without loss of generality, we work in 1+1 dimensions. Consider the action
describing a free particle of unit mass:

S =
∫

dt
1
2
.
x2

. (2.1)

Consider the scale transformation which is a dilation (dilatation) of time

t→ t ′ = s−1t . (2.2)

We find that the action remains invariant under transformation provided

x→ s−
1
2 x . (2.3)

Note that with the potential V (x) =−1
2

1
x2 , the action

S =
∫

dt
[1

2
.
x2

+
1
2

1
x2

]
(2.4)

and the equation of motion

d2x
dt2 −

1
x3 = 0 (2.5)

remains invariant under

t→ s−1t, x→ s−
1
2 x . (2.6)

Note that from p =
.
x, scaling law for the momentum p is p→ s

1
2 p. Then the Hamiltonian

H =
1
2

p2− 1
2

1
x2 → sH . (2.7)

The Hamiltonian scales, (it is important to note that the Hamiltonian is not invariant). From the
scaling laws, one may assign scale dimensions −1

2 , 1
2 and 1 to x, p and H respectively.

Define

D =−1
2

xp+Ht. (2.8)
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(See Goldstein, Classical Mechanics, Second Edition, page 430, problem 2.)
Using dx

dt = p and d p
dt =− 1

x3 , we get dD
dt = 0. Thus D is a constant of motion. Note that we are

dealing with a dynamical symmetry since H is not invariant under the transformation. Also note
that at t = 0, D =−1

2xp.
We find

δD x = [x,D]PB = − t
dx
dt
− 1

2
x

δD p = [p,D]PB = t
d p
dt

+
1
2

p

δD H = [H,D]PB = H. (2.9)

Note that the scale dimension −1
2 , 1

2 and 1 appear as coeffcients of x, p and H in these relations.
Note also that the Hamiltonians containing familiar potentials like the Coulomb potential or

the Harmonic oscillator potential won’t exhibit scaling behaviour since the kinetic term and the
potential term will have different scaling behaviour. One can also easily check that the equations
of motion in these cases won’t be invariant under the transformations, x→ s−1/2x, t→ s−1t.

From the discussion, it should be clear that the scale invariance associated with 1
x2 potential will

also hold in 2+1 and 3+1 dimensions. Further in 2+1 dimensions, the delta function potential δ 2(r)
also will be scale invariant. The later potential is a laboratory to illustrate asymptotic freedom and
dimensional transmutation in quantum mechanics. For more on this, see for example Jackiw [18]
and Perry [19].

2.2 Short distance behaviour and anomalous dimension in quantum mechanics

The concept of anomalous dimension could be understood from elementary quantum mechanics
following de Alfaro, Fubini, Furlan and Rossetti [20]. Consider Schroedinger equation[

− h̄2

2µ
∆+V (r)

]
φ(
→
r ) = Eφ(

→
r ) (2.10)

with

∆ =
1
r

∂ 2

∂ r2 r+
1
r2

(
∂ 2

∂θ 2 +
1

tanθ

∂

∂θ
+

1
sin2

θ

∂ 2

∂φ 2

)
=

1
r

∂ 2

∂ r2 r−
→
L

2

r2 . (2.11)

Writing

φ(
→
r ) = R(r) Ylm(θ ,φ) (2.12)

with

→
L

2
φ(
→
r ) = l(l +1)φ(

→
r ), (2.13)
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[ d2

dr2 −
l(l +1)

r2 − 2µ

h̄2 V (r)+
2µ

h̄2 E
]
u(r) = 0 (2.14)

where we have put R(r) = u(r)
r . Thus[ d2

dr2 + k2− l(l +1)
r2 − G(r)

rη

]
u(r) = 0 (2.15)

where we have put k2 = 2µ

h̄2 E and G(r)
rη = 2µ

h̄2 V (r).

Thus we have the free kinetic part d2

dr2 −
l(l+1)

r2 , ‘mass’ term k2 and interaction term G(r)
rη .

Let Limitr→0G(r) = G2.
Case I. η < 2. “super renormalizable”. For example, for η = 1, G2 has mass dimension.
We are interested in the behaviour near origin r→ 0 (short distance).
Kinetic term dominates at small r. For r→ 0, we can put u(r) = rs+1. From d2u

dr2 −
l(l+1)

r2 u = 0
we get s = l or s =−(l +1). The requirement that acceptable solution should go to zero at origin
for all l, means that we accept only the solution s = l.

Thus limit r→ 0, u(r) = rl+1.
Define the scale dimension to be the eigenvalue of the operator D = r d

dr . Then u(r) has scale
dimension l +1. Note that, in retrospect, we have rejected the solution with negative scale dimen-
sion.

Even though the complete solution is not an eigenfunction of D and scale breaking enters
through dependence on k2 and G2, short distance behaviour of the wavefunction is that of free field
theory. Scale dimension is canonical.

Case II. η = 2. “just renormalizable”.
Write

l̄(l̄ +1) = l(l +1)+G2. (2.16)

Then, limit r → 0, u(r) = rl̄+1 where l̄ + 1
2 =

√
(l + 1

2)
2 +G2. Now the scale dimension is

“dynamical” (it depends on the interaction) but we can still talk of solution with a given scale
dimension. We see that the interaction “ renormalizes” the canonical scale dimension to anoma-
lous dimension.

Case III. η > 2. Short distance behaviour is dominated by the interaction, the concept of scale
dimension is no longer useful. This case is left as a homework problem for the reader.

Note that case I is close to super renormalizable theories like φ 3 interaction in 3+1 dimensions
in quantum field theory. Case II is like φ 4 interaction in 3+1 dimensions.

2.3 Scale Symmetry in classical field theory

Here we follow standard text book treatment, for example, Ref. [21].

4



Consider the scale transformation x→ x′ = sx. Under this transformation, let the classical filed
φ(x)→ φ ′(x′) = s−dφ φ(x). s is the scale (dilation) factor and dφ is the scale dimension of the field
φ(x).

Consider the action

S =
∫

ddx L (φ(x),∂ µ
φ(x)). (2.17)

The transformed action

S ′ =
∫

ddx′ L (φ ′(x′),∂ ′µφ
′(x′)). (2.18)

We have ∂ ′µ = s−1∂µ . The Jacobian of transformation

J =

∣∣∣∣∂x′

∂x

∣∣∣∣= sd (2.19)

where d is the dimension of space-time. Then

S ′ = sd
∫

ddx L (s−dφ φ(x),s−1−dφ ∂µφ(x)). (2.20)

Explicitly, for,

S =
∫

ddx ∂µφ ∂
µ

φ (2.21)

S ′ = S if dφ = d
2 − 1. We can add a term φ n to the Lagrangian density, provided n dφ = d or

n = 2d
d−2 . Thus for d = 6, n = 3, for d = 4, n = 4, for d = 3, n = 6 and lastly for d = 2, n→∞, any

integer n is allowed!

2.4 Scale symmetry in quantum field theory

Here we follow the treatment in Pokorski [13].
Consider scale transformation defined as x→ x′ = sx = eε x. Let us consider the corresponding

transformation on classical fields. For simplicity we consider a scalar field which carry no Lorentz
index:

φ(x)→ φ
′(x′) = T (ε) φ(x) = (expε)−dφ φ(x). (2.22)

Let us denote the state vector in the Hilbert space by | v〉. We have 〈x |= 〈Ω | Φ(x) where | Ω〉 is
the vacuum state and Φ(x) is the field operator. The classical field, or the wave function

φ(x) = 〈x | v〉= 〈Ω |Φ(x) | v〉. (2.23)

Now, 〈x′ |= 〈Ω |Φ(x′) and let | v′〉=U†(s) | v〉. We get

φ
′(x′) = 〈x′ | v′〉= 〈Ω |Φ(x′)U†(s) | v〉= T φ(x) (2.24)
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using the invariance of the vacuum 〈Ω |U†(s)= 〈Ω |. Thus T Φ(x)=U(s)Φ(x′)U†(s) or U†(s)Φ(x)U(s)=
T−1 Φ(x′). Thus we conclude that, as

x→ x′ = sx, (2.25)

the classical field transforms as

φ(x)→ φ
′(x′) = (exp ε)−dφ φ(x) (2.26)

and consequently the quantum field operator transforms as

Φ(x)→Φ
′(x) =U†(s)Φ(x)U(s) = s−dφ Φ(sx) (2.27)

with s = exp ε .

2.4.1 Canonical considerations

Here we follow Wilson [22, 23].
We have seen that in quantum field theory, the scale transformation on a generic field Φ(x) is

achieved by means of a unitary transformation

Φ(x)→Φ
′(x) =U†(s)Φ(x)U(s) = sdφ Φ(sx). (2.28)

Canonically the scale dimension is determined by insisting that the canonical commutation relation
is invariant under scale transformation.

For example, consider the fermion field ψ(x) which obeys canonical (anti-)commutation rela-
tion

{ψ(x),ψ†(y)}x0=y0 = δ
3(x− y). (2.29)

Under the scale transformation x→ sx, ψ(x)→U†(s)ψ(x)U(s) = ψ ′(x). Let us first motivate why
the factor sd is introduced. Suppose we take ψ ′(x) = ψ(sx). It is easily verified that ψ ′(x) = ψ(sx)
does not satisfy canonical commutation relation. Then we define ψ ′(x) = sdψ ψ(sx) and choose dψ

so that ψ ′(x) satisfy canonical commutation relation. This gives dψ = 3/2 which incidentally is
the same as the engineering dimension of ψ in 3+1 dimensions.

Next we consider scalar field. For simplicity we denote the classical and quantum field by the
same symbol φ .

Consider the free scalar field Lagrangian density

L0 =
1
2

∂
µ

φ ∂µφ . (2.30)

The action

S0 =
∫

d4x L0. (2.31)
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The equation of motion is

∂
µ

∂µφ = 0. (2.32)

Equal time commutation relation is

[φ(x, t),
dφ(y, t)

dt
] = iδ 3(x− y). (2.33)

The Hamiltonian is

H =
1
2

∫
d4x

[
(
∂φ

∂ t
)2 +(∇φ)2

]
. (2.34)

If φ(x) is a solution of the equation of motion, Eq. (2.32), it is readily verified that φ(sx) is also
a solution. The field φ(sx) however does not satisfy the canonical commutation relation given in
Eq. (2.33). On the other hand φ ′(x) = sdφ φ(sx) with dφ = 1 satisfy the canonical commutation
relation and also is a solution to the equation of motion. From the Heisenberg equation of motion

i
∂φ(x, t)

∂ t
= [φ(x, t),H] (2.35)

we find that if U†(s)HU(s) = sH, φ(sx) obey the correct equation of motion, namely, i∂φ(sx,st)
∂ st =

[φ(sx,st),H].

2.4.2 Generator of scale transformation and the divergence of scale current

Let us write U(s) = e−i ln s D. For infinitesimal transformation put s = 1+ ε so that ln s = ε .
From U†(s)φ(x)U(s) = sd φ(sx), for infinitesimal transformation we get

i[D,φ(x)] = [d + xµ∂
µ ]φ(x) = δφ(x). (2.36)

With φ(x)→ φ(x)+ ε δφ(x) let us compute the variation in the Lagrangian density

δL = L (φ +δφ)−L (φ) (2.37)

For L0 given in Eq. (2.30), we find δL = [4+xρ∂ ρ ]L0. This shows that L0 has scale dimension
4. The Lagrangian density does not remain invariant but the action remains invariant since

δS =
∫

d4x δL0 = 0. (2.38)

Next consider Ls = − λ

4!φ
4. We find δLs = [4+ xρ∂ ρ ]Ls. This shows that Ls also has scale

dimension 4. Thus
∫

d4x δLs = 0.
Lastly consider LB = −1

2m2φ 2. We get δLB = [2+ xρ∂ ρ ]Ls. Thus LB has scale dimension
2.

We have ∫
d4x δLB = µ

2
∫

d4x φ
2. (2.39)
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Thus mass term in the Lagrangian density L = 1
2 ∂ µφ ∂µφ − 1

2m2φ 2− λ

4!φ
4 violates scale invari-

ance.
Next we identify the scale current (also called dilatation current) and calculate the divergence

of the scale current. In a scale invariant theory we found δ L = [4 + xµ∂ µ)]L = ∂ µ(xµL )

without using the Euler-Lagrange equation of motion. On the other hand, using explicitly the
Euler-Lagrange equation of motion,

δL = L
(

φ +δφ ,∂µ(φ +δφ)
)
−L

(
φ ,∂µφ

)
= ∂µ(π

µ
δφ) (2.40)

with πµ = ∂L
∂ (∂µ φ) . Thus we arrive at

∂
µDµ = ∂

µ(πµδφ − xµL ) = 0. (2.41)

Thus we identify the dilatation (or dilation) current

Dµ = πµ δφ − xµL . (2.42)

Starting from Dµ = πµ δφ − xµ L we compute the divergence of the scale current

∂
µDµ = −4L − xµ∂

µL +πµ∂
µ

δφ +∂
µ

πµδφ

= −4L +π
µ

∂µφ +∂
µ(πµφ) (2.43)

using δφ = φ + xρ∂ ρφ and ∂ µL = ∂L
∂φ

∂ µφ + ∂L
∂∂ρ φ

∂ µ∂ρφ .

From the canonical energy momentum tensor θ
µ

ν = πµ ∂νφ − gµ

νL , we get the trace of the
energy momentum tensor θ

µ

µ =−4L +πµ∂µφ . Thus, for the scalar field, we arrive at

∂
µDµ = θ

µ

µ +∂
µ(πµφ) = µ

2
φ

2. (2.44)

2.4.3 Why scale symmetry is a bad symmetry

For translation

U(a) = e−iaµ Pµ (2.45)

and for scale transformation

U(ε) = e−iεD. (2.46)

For infinitesimal transformation, consider U†(a)U†(ε)φ(x)U(ε)U(a)−U†(ε)U†(a)φ(x)U(a)U(ε).
On the one hand we get, edε

(
φ(eεx+ a)− φ(eε(x+ a)

)
= −εaµ∂µφ = −εaµ i [Pµ ,φ ]. On the

operator side we get, ε aµ

[
[D,Pµ ],φ

]
. Thus we get

i[D,Pµ ] = Pµ . (2.47)
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From Eq. (2.47) it immediately follows that

[D,PµPµ ] =−2 i P2. (2.48)

Exponentiating

eiεDP2e−iεD = e2ε P2. (2.49)

Let | p〉 be an eigenstate of P2 with eigenvalue p2. Then eiε DP2 e−iε D | p〉= e2ε p2 | p〉. Thus we
conclude that if | p〉 is an eigenstate of P2 with eigenvalue p2, e−iε D | p〉 is an eigenstate of P2 with
eigenvalue e2ε p2. This means that either all the states are massless or the spectrum is continuous.
This is a most unwelcome result since this rules out mass gaps and hence bound states.

Thus scale invariance, unlike Lorentz symmetry or Gauge symmetry is an unwanted symmetry.
There are three ways this symmetry may be broken:

+ Explicit breaking. Example: With a term−1
2 µ2φ 2 in the Lagrangian density, we got ∂ µDµ =

µ2φ 2.

+ Spontaneous symmetry breaking. Vacuum breaks the symmetry, i.e., e−iε D | Ω〉 6=| Ω〉. We
have Nambu-Goldstone realization of symmetry with the emergence of the Goldstone boson
(dilaton).

+ Anomalous breaking. Classical symmtery broken by quantum effects - visible in perturbation
theory.

We will study scale symmetry breaking of the first and third kind.
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CHAPTER 3

Naive Ward Identity of Broken Scale Invariance

In this chapter, following Wilson [22, 23] (see also Callan [24] and Symanzik [25]) we derive
the naive Ward identity of broken scale invariance. See also chapter 7 of Pokorski [13]. The whole
content of this chapter is a trivial exercise in Fourier transforms according to Coleman [26].

3.1 Naive Ward identity in coordinate space

When we have exact scale invariance, ∂ µDµ = 0 where Dµ is the scale current. When scale
invariance is broken explicitly by the presence of parameters having dimensions of mass in the
Lagrangian density, the scale current acquires a non vanishing divergence, ∂ µDµ(x) = S(x). (For
scalar field theory, we saw, S(x) = m2φ 2.

Let |Ω〉 denote the vacuum state. We wish to consider the matrix element

M̃(n)(x1,x2, . . . ,xn) =
∫

d4y 〈Ω | T
[
φ(x1)φ(x2) . . .φ(xn)S(y)

]
|Ω〉> (3.1)

where T is the time ordering symbol. Thus M̃(n) is the n-point Greens function with the zero
momentum insertion

∫
d4y S(y). Now we are going to perform a set of canonical manipulations

that are usually done to derive Ward Identities that arise as a consequence of some conserved
current (or softly broken symmetry). To show the manipulations explicitly, we specialize to the
case n = 2 for simplicity.

M̃(2)(x1,x2) =
∫

d4y 〈Ω | T
[
φ(x1)φ(x2)S(y)

]
|Ω〉

=
∫

d4y 〈Ω |

{
θ(x0

1− x0
2)θ(x

0
2− y0)φ(x1)φ(x2)S(y)

+5 more terms

}
|Ω〉. (3.2)

Now replace S(y) by ∂
y
µDµ(y). We have put a superscript on the derivative to remind us that

the derivative is with respect to y. Do a partial integration and ignore the surface terms. Then

M̃(2)(x1,x2) = −
∫

d4y 〈Ω |

{[
∂

y
µθ(x0

2− y0)
]
θ(x0

1− x0
2)φ(x1) φ(x2) Dµ(y)

+5 more terms
]
|Ω〉. (3.3)
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Noting that the derivative will involve only the time derivative, we replace∫
d3y D0(y0,y) = D(y0) (3.4)

where D(y0) is the charge or the generator of scale transformation. Then

M̃(2)(x1,x2) = −
∫

dy0 〈Ω |

{[
∂

∂y0 θ(x0
2− y0)

]
φ(x1) φ(x2) D(y0)+5 more terms

}
|Ω〉

= 〈Ω |

{
φ(x1) φ(x2) D(x0

2)+7 more terms

}
|Ω〉> (3.5)

i.e.,

M̃(2)(x1,x2) = θ(x0
1− x0

2)〈Ω | φ(x1)
[
φ(x2),D(x0

2)
]
|Ω〉

+θ(x0
1− x0

2)〈Ω |
[
φ(x1),D(x0

1)
]
φ(x2)

]
|Ω〉

+θ(x0
2− x0

1)〈Ω | φ(x2)
[
φ(x1),D(x0

1)
]
|Ω〉

+θ(x0
2− x0

1)〈Ω |
[
φ(x2),D(x0

2)
]
φ(x1) |Ω〉. (3.6)

Using [
φ(x1),D(x0

1)
]
= i[d + x1µ∂

µ

1 ]φ(x1) (3.7)

M̃(2)(x1,x2) = 2id〈Ω | T [φ(x1)φ(x2)] |Ω〉+
+iθ(x0

1− x0
2)〈Ω | φ(x1)x2µ∂

µ

2 φ(x2) |Ω〉
+iθ(x0

1− x0
2)〈Ω | x1µ∂

µ

1 φ(x1)φ(x2) |Ω〉
+iθ(x0

2− x0
1)〈Ω | φ(x2)x1µ∂

µ

1 φ(x1) |Ω〉
+iθ(x0

2− x0
1)〈Ω | x2µ∂

µ

2 φ(x2)φ(x1) |Ω〉. (3.8)

Using

x2µ∂
µ

2

[
θ(x0

1− x0
2)〈Ω | φ(x1)φ(x2) |Ω〉

]
=

θ(x0
1− x0

2)〈Ω | φ(x1)x2µ∂
µ

2 φ(x2) |Ω〉

+x2µ

[
∂

µ

2 θ(x0
1− x0

2)
]
〈Ω | φ(x1)φ(x2) |Ω〉 (3.9)

we get

M̃(2)(x1,x2) =
[
2id + ix1 ·∂1 + ix2 ·∂2

]
〈Ω | T

[
φ(x1)φ(x2)

]
|Ω〉 (3.10)

as result of the terms containing the delta functions cancelling among themselves. Identifying the
position space two-point function

G̃(2)(x1,x2) = 〈Ω | T
[
φ(x1)φ(x2)

]
|Ω〉 (3.11)

11



we have derived

M̃(2)(x1,x2) =
[
2id + ix1 ·∂1 + ix2 ·∂2

]
G̃(2)(x1,x2). (3.12)

Generalizing to n variables we find

M̃(n)(x1,x2, . . . ,xn) =
[
nid + ix1 ·∂1 + ix2 ·∂2 + . . .+ ixn ·∂n

]
G̃(n)(x1,x2, . . . ,xn). (3.13)

This the naive Ward Identity associated with broken scale invariance. If scale invariance is
exact, S(y) = 0 and hence M̃(n) vanishes. Thus, for exact scale invariance we have[

nid + ix1 ·∂1 + ix2 ·∂2 + . . .+ ixn ·∂n

]
G̃(n)(x1,x2, . . . ,xn) = 0. (3.14)

3.2 Naive Ward Identity in momentum space

Let us look at the Ward Identity of broken scale invariance in momentum space.
The momentum space Green’s function is defined by

(2π)4
δ

4(p1 + p2 + . . .+ pn) G(n)(p1, p2, . . . , pn−1) =∫
Π

n
i d4xi e−ipi·xi G̃(n)(x1,x2, . . . ,xn). (3.15)

Restrict to n = 3.

(2π)4
δ

4(p1 + p2 + p3) G(3)(p1, p2) =
∫

d4x1 d4x2 d4x3 e−ip1·x1 e−ip2·x2e−ip3·x3G̃(3)(x1,x2,x3).

=
∫

d4x1 d4x2 d4x3 e−ip1·(x1−x3) e−ip2·(x2−x3)G̃(3)(x1,x2,x3).

(3.16)

From

M̃(3)(x1,x2,x3) = i
[
3d + x1 ·∂1 + x2 ·∂2 + x3 ·∂3

]
G̃(3)(x1,x2,x3) (3.17)

∫
d4 p1

∫
d4 p2

∫
d4 p3(2π)4

δ
4(p1 + p2 + p3) eip1·x1 eip2·x2eip3·x3 M(3)(p1, p2, p3) =

i[3d + x1 ·∂1 + x2 ·∂2 + x3 ·∂3

]
∫

d4 p1

∫
d4 p2

∫
d4 p3eip1·x1 eip2·x2 eip3·x3 (2π)4

δ
4(p1 + p2 + p3) G(3)(p1, p2, p3). (3.18)

i.e.,

∫
d4 p1

∫
d4 p2 eip1·(x1−x3) eip2·(x2−x3) M(3)(p1, p2) =

i[3d + x1 ·∂1 + x2 ·∂2 + x3 ·∂3

] ∫
d4 p1

∫
d4 p2 eip1·(x1−x3) eip2·(x2−x3) G(3)(p1, p2). (3.19)
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Using[
x1 ·∂1 + x2 ·∂2 + x3 ·∂3

]
e−ip1·(x1−x2) e−ip2·(x3−x2) =

[
p1 ·

∂

∂ p1
+ p2 ·

∂

∂ p2

]
e−ip1·(x1−x2)

ei−p2·(x3−x2) (3.20)

and doing a partial integration and ignoring surface terms we arrive at

M(3)(p1, p2) = i
[
3d−8− p1 ·

∂

∂ p1
− p2 ·

∂

∂ p2

]
G(3)(p1, p2). (3.21)

Generalizing to n variables we get the momentum space version of the naive Ward identity of
broken scale invariance

M(n)(p1, p2, . . . , pn−1) = i
[
nd−4(n−1)−

n−1

∑
r=1

pr ·
∂

∂ pr

]
G(n)(p1, p2, . . . , pn−1). (3.22)

3.3 Naive Renormalization Group equation

To convert the above equation to the form of a Renormalization Group equation we do a di-
mensional analysis. For simplicity we consider the case where the theory has only one dimension
full parameter with the dimension of mass, µ . In the bare theory µ may be the bare mass and in
the renormalized theory with on-shell renormalization, µ may denote the renormalized mass. Let
us recall the definition of the momentum space Green’s function:

(2π)4
δ

4(p1 + p2 + . . .+ pn) G(n)(p1, p2, . . . , pn−1) =∫
Π

n
i d4xi e−ipi·xi G̃(n)(x1,x2, . . . ,xn). (3.23)

From the dimensional analysis

G̃n ∼ µ
n. (3.24)

Refering back to Eq. (3.15), since δ 4(p1 + p2 + . . .+ pn) has dimension µ−4 and Πn
i d4xi has

dimension µ−4n, we find

G(n)(p1, p2, . . . , pn−1)∼ µ
4−3n. (3.25)

Thus in terms of a dimensionless function Φ we can write

G(n)(p1, p2, . . . , pn−1) = µ
4−3n

Φ(
p1

µ
,

p2

µ
, . . . ,

pn−1

µ
). (3.26)

We have,

n−1

∑
r=1

pr ·
∂

∂ pr

]
G(n)(p1, p2, . . . , pn−1) =

[
4−3n−µ

∂

∂ µ

]
G(n)(p1, p2, . . . , pn−1). (3.27)
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Substituting back, we get[
µ

∂

∂ µ
+n(d−1)

]
G(n)(p1, p2, . . . , pn−1) =−iM(n)(p1, p2, . . . , pn−1). (3.28)

Consider the case of scalar field theory. Canonically d = 1. Since in a canonically scale invariant
theory M(n) = 0, we get µ

∂

∂ µ
G(n)(p1, p2, . . . , pn−1) = 0 which trivially holds (naively speaking, of

course).

3.4 Why the naive Ward Identity is too naive

Consider the case of exact scale invariance i.e., M(2) = 0 for n = 2 in Eq. (3.22),[
p · ∂

∂ p
+4−2d

]
G(2)(p) = 0. (3.29)

Since G(2)(p) depends only on p2, we get[
p2 ∂

∂ p2 +2−d
]
G(2)(p2) = 0. (3.30)

The solution is

G(2)(p2) =C
1
p2 (p2)d−1 (3.31)

where C is a constant. For d = 1, the canonical value, the Ward Identity predicts that the momentum
dependence of the exact two-point function in the interacting theory is the same as that of the free
one. This turns out to be completely wrong! In the next chapter we elaborate on this issue.
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CHAPTER 4

Anomalous Dimension in Quantum Field Theory

In the last chapter, we stated that the prediction of the Ward identity of broken scale invari-
ance derived using standard manipulations for the momentum dependence of Greens functions is
completely wrong. Where did one go wrong? At the canonical level, in 3+1 dimensions, the scale
dimension of scalar field d=1. Anticipating future, we kept it as d. We have found that what ap-
pears naturally in the Ward identity is d−1. Is there a possibility that d deviates from 1 so that one
has d = 1+ γ? The deviation γ is called anomalous dimension since, in the presence of γ in the
Ward Identity, one can still recover scale invariance though with non-canonical scale dimension.
We have already seen this possibility in our quantum mechanical exercise with 1

r2 potential.

4.1 Non-perturbative anomalous dimension

The existence of non-perturbative anomalous dimension in quantum field theory was first
demonstrated by K. G. Wilson [27] using the exact solution of massless Thirring model by K.
Johnson [28].

The massless Thirring model is the model in 1+1 dimensions of massless fermions interacting
via a current-current interaction.

The Lagrangian density is

L = ψ̄iγµ
∂µψ− λ

2
ψ̄γ

µ
ψψ̄γµψ. (4.1)

In 1+1 dimensions, canonically, ψ has scale dimension 1
2 and the coupling λ is dimensionless.

Thus the model is exactly scale invariant at the classical level.
Johnson showed that the two-point and four-point Greens functions of the model can be calcu-

lated exactly using the facts that (1) vector current jµ and the axial vector current jµ

5 are conserved
exactly and (2) the axial vector current jµ

5 is related to the vector current jµ in 1+1 dimensions by
jµ

5 = εµν jν in 1+1 dimensions with εµν being the antisymmetric tensor.
The two point function is given by

G(x− y) = i 〈Ω | T (ψ(x)ψ̄(y)) |Ω〉

= exp
{
− iλ (a− ā) D0(x− y)

}
G0(x− y) (4.2)

with a = 1
1−λ/(2π) and ā = 1

1+λ/(2π) . Here |Ω〉 is the vacuum state, T is the time-ordering symbol,
G0(x− y) is the free massless Dirac propagator and D0(x− y) is the free propagator of a massless
scalar field. Explicitly

G0(x− y) =
1

2π
γ

µ(x− y)µ

1
(x− y)2 + iη

(4.3)
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and

D0(x− y) =− i
4π

ln [
−(x− y)2 + iη

x2
0

]. (4.4)

To keep dimensions correct, an arbitrary constant length x0 is introduced which remains unchanged
under scale transformation.

Under scale transformation where the coordinate x→ sx

ψ(x)→U†(s)ψ(x)U(s) = sd
ψ(sx). (4.5)

Demanding the canonical commutation relation

{ψ(x),ψ†(y)}= iδ (x− y) (4.6)

to be invariant under scale transformation, we get d = 1
2 .

Consider the exact two-point function

G(x− y) = i 〈Ω | T (ψ(x)ψ̄(y)) |Ω〉
= i 〈Ω |U(s)T (U†(s)ψ(x)U(s)U†(s)ψ̄(y))U(s)U†(s) |Ω〉
= s2d G(sx− sy) (4.7)

using the invariance of the vacuum. (Exact scale invariance of the theory at the tree level is pre-
served in the exact solution since no new parameter with dimension of mass is present.) Thus we
have

s2d exp
{
− iλ (a− ā) D0(sx− sy)

}
G0(sx− sy) = exp

{
− iλ (a− ā) D0(x− y)

}
G0(x− y). (4.8)

Using the explicit expressions for G0 and D0 given in Eq. (4.3) and Eq. (4.4) respectively, we
arrive at

d =
1
2
+

λ 2/(4π2)

1−λ 2/(4π2)
=

1
2
+ γ. (4.9)

The anomalous dimension γ can even become ∞ as the coupling λ →±2π .
As a side comment we note that the beta function β is exactly zero in this model. This arises

from that fact that the interaction is of the form vector current - vector current, and the current is
conserved.

We have to wonder about the source of the anomalous dimension. In perturbation theory at
least, Thirring model has ultraviolet divergences. To make sense of the theory we need put an
ultraviolet cutoff Λ. As we try to take Λ to infinity, the limit is not smooth. In other words,
the short distance limit is not that of the free field theory. Anomalous dimension indeed is the
mark of the microscopic length scale 1

Λ
that is left behind as the cutoff is taken to infinity and

renormalization is performed by sweeping the trouble under the rug by means of wave function
renormalization. In this sense the anomalous dimension is a cousin of the grin of the famous
Cheshire-Cat in Alice’s Adventures in Wonderland. Cat (cutoff) has disappeared leaving only the
grin (anomalous dimension)! In the next section we elaborate on this using the computation of
anomalous dimension in perturbation theory both in the cutoff and renormalized versions.
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4.2 Example of anomalous dimension in perturbation theory

Consider photon propagator in QED in the Feynman gauge λ = 1. At tree level

iDµν

(0)(k) = i (−) gµν

k2 + iη
. (4.10)

To second order in the coupling we get,

i Dµν

(2)(k) = i Dµν

(0)(k)+ i Dµρ

(0)(k) i Πρσ (k) i Dσν

(0)(k) (4.11)

where the photon self energy or the vacuum polarization is given by

i Π
µν(k) = e2

∫ d4 p
(2π)4 Tr

[
γ

µ 1
γρ pρ −m+ iη

γ
ν 1

γρ pρ − kρ −m+ iη

]
. (4.12)

With Πµν(k) = [kµkν −gµνk2] Π(k2), to order e2, we have

Dµν

(2)(k) =−
gµν

k2 + iη

[
1−Π(k2)

]
+ . . . (4.13)

where . . . represents uninteresting (in the present context!) terms containing kµ , kν , etc.
In Pauli-Villars regularization, we get

1−Π(k2) = 1− α

3π
ln

M2

m2 +2
α

π

∫ 1

0
dz z (1− z) ln

[ m2− k2z(1− z)
m2

]
(4.14)

where M is the Pauli-Villars mass (= Λ). In the on-shell renormalization scheme,

Π(k2) = Π(k2)div +Π(k2) f in (4.15)

with Π(k2)div = Π(k2 = 0). Then the photon propagator to order e2 is given by

Dµν

(2)(k) = Z3(Λ) Dµν

(R)(k). (4.16)

The renormalization constant

Z3(Λ) = 1− α

3π
ln
[

Λ2

m2

]
(4.17)

and the renormalized photon propagator to order α

Dµν

(R)(k) =−
gµν

k2 + iη

[
1+2

α

π

∫ 1

0
dz z (1− z) ln

[ m2− k2z(1− z)
m2

]]
. (4.18)

Let us study the behaviour of Dµν

(R)(k) in the deep Euclidean region (k2→−k2
E , | kE |→ ∞). In this

limit

Dµν

(R)(k)≈ gµν 1
k2

[
1+

e2

12π2 ln
k2

m2

]
. (4.19)
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Thus to order we can write (in the deep Euclidean region)

Dµν

(R)(k) = gµν 1
k2

(
k2

m2

)(e2/(12π2))

. (4.20)

Recalling the prediction of the naive Ward identity for the propagator for asymptotic momenta, we
identify the perturbative anomalous dimension to order e2 to be γ = e2

12π2 .

Note: We have pretended that 1+ x ≈ ex. Recalling ex = 1+ x+ x2

2! + . . . and 1/(1− x) =
1+x+x2+ . . . we can’t be sure whether the identification will hold to higher order in e2. In fact, it
doesn’t. Thus the anomalous dimension in the present example is more like a would-be anomalous
dimension.

So far we identified the anomalous dimension in the renormalized theory. Next we proceed to
calculate the same in the bare cutoff theory.

The definition of the anomalous dimension in terms of the wave function renormalization con-
stant for the field φ is

γφ = µ
2 ∂

∂ µ2 ln Zφ |(Λ,λ0)

= − ∂

∂ lnΛ2 ln Zφ |(µ,λ0) (4.21)

where λ0 is the bare coupling constant and µ is the renormalization scale. Using

Z3(Λ) = 1− α

3π
ln
[

Λ2

m2

]
(4.22)

we get γ = e2

12π2 which agrees with the value calculated in the renormalized theory.

4.3 Story so far

Allowing for an arbitrary scale dimension d for the field, our naive Ward Identity of broken
scale invariance for the n-point momentum space Greens function took the form[

µ
∂

∂ µ
+n(d−1)

]
G(n)(p1, p2, . . . , pn−1) =−iM(n)(p1, p2, . . . , pn−1). (4.23)

Now we have found enough motivation to modify this equation to read[
µ

∂

∂ µ
+nγ

]
G(n)(p1, p2, . . . , pn−1) =−iM(n)(p1, p2, . . . , pn−1). (4.24)

Thus, as a result of short distance divergences in the wave function renormalization constant, the
scale dimension becomes interaction dependent but scaling is still recovered in the asymptotic
momenta limit.

Question arises whether this is all. A resounding answer turns out to be NO. The next (and
final) correction to the naive Ward Identity introduces the concepts of effective coupling constant
and another renormalization function named beta function. We take this up in the next chapter.
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CHAPTER 5

Running Coupling Constant and the β Function

In this chapter we verbatim follow (for the discussion of φ 4 theory) Wilson’s treatment in Ref.
([29]) which provides the most intuitive picture of renormalization as a problem of infinitely many
scales (popularly known under the misnomer Wilson Renormalization Group. In this work, Wilson
starts with a generic situation. In general, in nature, a physical system has a number of length scales
each of which is described by a different set of laws. Wilson gives the example of water which
on a macroscopic scale with wavelength of the order of meters, is described by an equation which
is governed by the laws of hydrodynamics. Some parameters appear in this equation, namely,
density and viscosity. To determine these parameters, one has to solve the problem of water on a
smaller length scale, the atomic scale. At this scale, the relevant equation (Schroedinger equation)
is governed by a different physical law, namely, quantum mechanics. At the atomic scale, we
need parameters like masses of nuclei which are just parameters at this scale. Thus at each length
scale we need a few parameters to solve the problem. Important observation of Wilson is that the
parameters for a given length scale are determined from the parameters for the next smaller length
scale. Thus in a typical physical system encountered in nature, different length scales are governed
by different laws of physics.

Now come to quantum field theory. Take the simplest field theory, g0
4! φ 4 as an example. Con-

sider the 4-point function.
We ignore the t-channel and u-channel contributions at the moment. They do not affect the

discussion in the following in a significant way. The tree level contributes −i g0. Second order
contributes −g2

0c1
∫

d4k 1
k2+m2

1
(k+q)2+m2 . We are in Euclidean space. The coefficient c1 > 0.

Integral contains a logarithmic divergence coming from the region of large k where the magnitude
of k is much larger than the magnitude of q or m. Henceforth we denote the magnitudes by k and
q. Since the external momentum q is at our disposal, we consider q >> m. Then the log divergent
part of the integral is

∫
∞

q
d4k
k4 =

∫
∞

q
dk
k . Let us divide the interval from q to ∞ in the following way:

∫
∞

q

dk
k

=
∫ 2q

q

dk
k
+
∫ 4q

2q

dk
k
+ . . . . (5.1)

Note that the contribution from each subinterval is finite. Divergence is due to the presence of
an infinite number of subintervals from q to ∞. Each subinterval represents the contribution of
different momentum scale. Divergence arises because every momentum scale from q to ∞ is trying
to make an equal contribution; and there are an infinite number of momentum scales.

It is obvious that an infinite number of energy scales all contributing equal finite amount is
specific to a logarithmically diverging integral. For a linearly or quadratically divergent integral,
higher energy scales will contribute more and for a convergent integral higher energy scales will
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contribute less. So why make a big fuss? The answer is that the holy grail of finding the contin-
uum limit of a quantum field theory depends on the β function and the beta function arises from
logarithms.

A major difference between the example of water and φ 4 theory is to be noted. For water,
different length scales are governed by different physical laws. But we see shortly that for φ 4

theory, physical laws describing different length scales do not change from scale to scale. However,
the parameters appearing in φ 4 theory do change from scale to scale. We now try to see how this
comes about. Anticipating future, we will see that instead of a single coupling constant g0, there
will be a momentum dependent coupling constant ge f f (q).

5.1 In φ 4 theory

From the explicit calculation, (including all the relevant graphs) we define

−ige f f (q) =−g0 + ic2g2
0

∫
∞

q

dk
k

, c2 > 0, (5.2)

or

ge f f (q) = g0 + cg2
0

∫
∞

q

dk
k

, c < 0. (5.3)

With analogy of the water example, we expect to determine ge f f (q) knowing ge f f (2q). Indeed,
from our definitions,

ge f f (q) = g0 + cg2
0

∫ 2q

q

dk
k
+ cg2

0

∫
∞

2q

dk
k
. (5.4)

Thus

ge f f (q) = ge f f (2q)+ cg2
0

∫ 2q

q

dk
k
. (5.5)

This equation still contains g2
0. Note that since we stopped the perturbative calculation to order g2

o,
the above equation is not correct to order g3

0 and higher, so within the accuracy of the approxima-
tion, it is legitimate to replace g2

0 by g2
e f f (2q) in the above equation. Thus we have the remarkable

result

ge f f (q) = ge f f (2q)+ c g2
e f f (2q) ln 2 c < 0 (5.6)

As expected, when ge f f (q) is expressed in terms of ge f f (2q), only one momentum scale is in-
volved, that from q to 2q. Thus we no longer see any divergence.

From Eq. (5.6), we find that, since c < 0, ge f f (2q)> ge f f (q), i.e., effective coupling increases
as momentum scale increases.

From what we got, we can arrive at a differential equation for the effective coupling.
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We have

ge f f (q−δq) = ge f f (q)+ cg2
e f f (q)

∫ q

q−δq

dk
k
. (5.7)

Thus

ge f f (q)−ge f f (q−δq) =−c g2
e f f (q) [ln q− ln (q−δq)], (5.8)

or

dge f f (q) =−cg2
e f f (q)d ln q. (5.9)

From Eq. (5.9), we have

dge f f (q)
d ln q

=−cg2
e f f (q) = β (ge f f ) (5.10)

which defines the β function of renormalization group.
Integrating,

ge f f (q) =
ge f f (q0)

1+ cge f f (q0) ln (q/q0)
, c < 0 (5.11)

For φ 4 theory, near small g, we have found that β (g)> 0, since c < 0.

5.2 In QED

5.2.1 β function

In QED, the relation between the renormalized charge eR and bare charge e0 is given by eR =

e0 Z with Z =
√

Z3, Z3 being the photon renormalization constant. β function is defined by (see,
for example, Cheng and Li [7], chapter 3)

β = 2µ
2 ∂

∂ µ2 eR(e0,Λ/µ) |(e0,Λ)

= eR µ
∂

∂ µ
ln Z(e0,Λ/µ) |(e0,Λ) using eR = e0 Z

= −eR
∂

∂ ln Λ
ln Z(e0,Λ/µ) |(e0,µ)

= − eR
∂

∂ ln Λ2 ln Z3 |(eR,µ)

=
e3

R
12π2 (5.12)

using the explicit result from Pauli-Villars regularization,

Z3(Λ) = 1− e2
R

12π2 ln
Λ2

m2 . (5.13)
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Thus the positivity of the β function in QED is directly connected with Z3 < 1 which is a conse-
quence of the positivity of the spectral function. The reason for this connection is of course the
Ward Identity Z1 = Z2.

We have

dee f f (q)
d lnq

= β (ee f f ) =
e3

e f f

12π2 . (5.14)

Integrating

αe f f (q) =
αe f f (q0)

1− αe f f (q0)
3π

ln q2

q2
0

. (5.15)

As a consequence of positive β , effective coupling in QED increases with momentum and even-
tually blows up at q2 = q2

0× 10560. Of course long before this happens the lowest order result
which is used to arrive at this conclusion becomes invalid. This is because the effective coupling
is growing with momentum and neglected terms in the perturbation expansion become more im-
portant than those that are kept. The pole in the effective fine structure constant is called a Landau
ghost. Why is it called a ghost? To answer this we look at the photon propagator in the same
approximation.

5.2.2 Photon propagator in the leading logarithmic approximation

Recall the form of the renormalized (on-shell scheme) photon propagator to order α in QED.

Dµν

(R)(k) =−
gµν

k2 + iη

[
1+2

α

π

∫ 1

0
dz z (1− z) ln

[ m2− k2z(1− z)
m2

]]
. (5.16)

By summing the leading logarithms, we get

Dµν

(R)(k) =−
gµν

k2 + iη
1

1−2α

π

∫ 1
0 dz z (1− z) ln

[
m2−k2z(1−z)

m2

] . (5.17)

Note that this approximation is also called bubble approximation [30, 31].
In the deep Euclidean region, k2→−k2

E , | kE |→ ∞,

Dµν

(R)(k)≈
gµν

k2
E

1

1−α/(3π) ln k2
E

m2

. (5.18)

Thus the photon propagator develops an extra pole at k2
E = m2×10560.

(To match with the result from the previous subsection, we note that for q0 = m, the electron
mass, αe f f (q0) = 1/137.)

Thus we have found that in Minkowski space, photon propagator has, in addition to the physical
pole at k2 = 0, an extra pole at space-like momentum k2 =−m2×10560. Physical particles should
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correspond to poles of the propagator for time-like momentum so a pole of the propagator for
space-like momentum has to be a ghost!

This indicates a possible inconsistency of QED at large (indeed VERY, VERY LARGE) energy
scales. Can one trust this conclusion from partial summation of perturbation series? We note that
the problem arose from the positivity of the beta function (at least for small coupling) which
resulted from the photon wave function renormalization constant Z3 being less than one. But this
constraint is outside of perturbation theory, being a consequence of positivity constraint on the
spectral function. The result of the inconsistency of QED at high energies even though derived in
perturbation theory may be valid outside of perturbation theory.

Everything is not lost, however. QED is supposed to be the physical law for atomic systems
where the typical energy scale is of the order of electron volts. At this energy scale, the rest mass
of the electron itself, being 106 bigger, provides a natural high momentum cutoff!
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CHAPTER 6

Renormalization Group Equations

In this chapter first we look at the modified Ward identity of broken scale invariance (popularly
known as renormalization group equation) in the context of on-shell renormalization. This is the
well-known Callan-Symanzik equation. Then we illustrate the arbitrariness in the renormalization
process with the example of one loop vacuum polarization in QED in the contexts of Pauli-Villars
regularization and dimensional regularization. Then we look at renormalization group equations
in some subtraction schemes other than on-shell renormalization. Lastly we take up the question
of group in renormalization group.

6.1 Callan-Symanzik Equation

In chapter 3, we started with the study of the naive Ward identity of broken scale invariance. At
the end of chapter 4 we found (hopefully) convincing evidence for the deviation of scale dimension
from its canonical (tree level) value. The reason for this deviation is the divergence of wave
function renormalization constants as the ultra-violet cutoff becomes very large. This divergence
results in finite anomalous dimensions in the renormalized theory which signals deviation from
canonical scaling laws. Thus we arrived at[

µ
∂

∂ µ
+nγ

]
G(n)(p1, p2, . . . , pn−1) =−iM(n)(p1, p2, . . . , pn−1). (6.1)

For one particle irreducible, truncated vertex function Γ(n) the corresponding equation is[
µ

∂

∂ µ
−nγ

]
Γ
(n)(p1, p2, . . . , pn−1) =−iM(n)

(p1, p2, . . . , pn−1) (6.2)

where M(n) denotes the corresponding one particle irreducible, truncated vertex function with the
insertion of the integral of the divergence of scale current. Note the change in sign of the term
containing γ in going from Eq. (6.1) to Eq. (6.2). Note that in the absence of the explicit scale
breaking (right hand side of above equations zero), the Greens functions will obey scaling laws
with naive scale dimension modified by anomalous dimension.

But in chapter 5, we encountered a new aspect of divergence apart from modifications to field
normalizations. We encountered the phenomena of coupling constant changing with scale. This
was controlled by the β function. Thus we need to modify the naive Ward identity further, to take
in to account the variation of coupling constant with scale. Accordingly we add a term proportional
to ∂

∂g to the right hand side. (This effect survives even when the right hand side vanishes, i.e., when
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there are no dimension full parameters in the tree level Lagrangian.) The effect can be avoided only
if β function is zero everywhere. To reflect this fact, we take the modified term to β

∂

∂g .
It turns out that in renormalizable field theories there are no more modifications (for a simple

demonstration, see Ref. [24]). Thus the modified Ward identity of broken scale invariance is

[
µ

∂

∂ µ
−nγ +β

∂

∂g

]
Γ
(n)(p1, p2, . . . , pn−1) =−iM(n)

(p1, p2, . . . , pn−1). (6.3)

One basic ingredient in the beginning of our derivation of Eq. (6.3) was that the theory is charac-
terized by a single mass. This is true only in cutoff regularization with on-shell subtraction. In this
scheme, since there is only one mass parameter, namely renormalized mass mR which is the same
as the physical mass, the dimensionless functions γ and β can depend only on the renormalized di-
mensionless coupling constant. In the renormalized theory, the Greens function with the insertion,
M(n) can acquire extra renormalization. We account for this fact by multiplying M(n) by a factor
α . Thus we heuristically arrive at[

mR
∂

∂mR
−nγ(gR)+β (gR)

∂

∂gR

]
Γ
(n)(p1, p2, . . . , pn−1) =−i α M(n)

(p1, p2, . . . , pn−1). (6.4)

which is nothing but the Callan-Symanzik equation of renormalization group. We remind the
reader that this equation is associated with the scheme of on-shell subtraction.

6.2 Arbitrariness in the process of renormalization

We look at the arbitrariness in the process of renormalization with example of one loop vacuum
polarization in QED.

6.2.1 Pauli-Villars Regularization

First let us consider Pauli-Villars regularization.
Our starting point is the Pauli-Villars regulated expression for the vacuum polarization

1−Π(k2) = 1− α

3π
ln

Λ2

m2 +2
α

π

∫ 1

0
dz z(1− z) ln

m2− k2(z(1− z)
m2 . (6.5)

To isolates the divergence we write

Π(k2) = Π(k2)div +Π(k2) f in (6.6)

where the meanings of the subscripts are self-evident.
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On-shell subtraction

In the on-shell subtraction scheme we choose

Π(k2)div = Π(k2 = 0) =
α

3π
ln

Λ2

m2 . (6.7)

Then

1−Π(k2) f in = 1+2
α

π

∫ 1

0
dz z(1− z) ln

m2− k2(z(1− z)
m2 . (6.8)

As long as a non-zero external momentum k flows into the loop, we expect it to provide the
infra-red regulator and we expect no singularities in the vacuum polarization in the limit of electron
mass m tending to zero. This is evident in the regulated expression Eq. (6.5) since, as m→ 0

1−Π(k2)→ 1+2
α

π

∫ 1

0
dz z(1− z) ln

−k2z(1− z)
Λ2 . (6.9)

However the finite part of Π(k2) given in Eq. (6.8) is infra-red divergent in the limit m→ 0. Noting
that, in this scheme the infinite part given in Eq. (6.7) is also infra-red divergent in this limit, it is
clear that the infra-red divergence is produced solely by the on-shell renormalization scheme. This
gives rise to hope that one may avoid it by choosing another subtraction scheme. This was noticed
by Gell-Mann and Low [9] who proposed the off-shell subtraction as the remedy.

Off-shell subtraction

Define

Π(k2) = Π(k2 =−λ
2), λ

2 > 0. (6.10)

Then

1−Π(k2)div = 1−2
α

π

∫ 1

0
dz z(1− z) ln

Λ2

m2 +λ 2z(1− z)

= − α

3π
ln

Λ2

λ 2 , for λ
2 >> m2 . (6.11)

Finite part is

1−Π(k2) f in = 1+2
α

π

∫ 1

0
dz z(1− z) ln

m2− k2z(1− z)
m2 +λ 2z(1− z)

→ 1+
α

3π
ln
−k2

λ 2 , for − k2,λ 2 >> m2. (6.12)

Thus both the divergent and finite parts of Π(k2) are free of infra-red divergence in the limit m→ 0.
Not that there is nothing special about λ . The value of λ is chosen depending upon the occa-

sion.
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6.2.2 Dimensional Regularization

Next we consider dimensional regularization.
In dimensional regularization we get

Π(k2) =
e2

6π2
1
ε
− e2

12π2 (γE − ln 4π)− e2

2π2

∫ 1

0
dz z(1− z) ln

m2− k2z(1− z)
µ2 (6.13)

where µ is the mass introduced to make e dimensionless. As a result e depends on µ .

On-shell subtraction

Π(k2)div = Π(k2 = 0) =
e2

6π2
1
ε
− e2

12π2 (γE − ln 4π). (6.14)

Then Z3 depends on on µ,α,m, and ε .

Π(k2) f in =−
e2

2π2

∫ 1

0
dz z(1− z) ln

m2− k2z(1− z)
µ2 (6.15)

looks the same as Π(k2) f in in Pauli-Villars regularization scheme.

Off-shell subtraction

Π(k2)div = Π(k2 =−λ
2)

=
e2

6π2
1
ε
− e2

12π2 (γE − ln 4π)
e2

2π2

∫ 1

0
dz z(1− z) ln

m2 +λ 2z(1− z)
µ2 . (6.16)

The finite part is

Π(k2) f in =−
e2

2π2

∫ 1

0
dz z(1− z) ln

m2− k2z(1− z)
m2 +λ 2z(1− z)

(6.17)

which looks the same as in Pauli-Villars regularization.

Minimal subtraction

In dimensional regularization, one has more choices of subtraction schemes than cut-off regu-
lator schemes. For example, one can choose

Π(k2)div =
e2

6π2
1
ε

(6.18)

which is called Minimal Subtraction scheme. In this scheme

Π(k2) f in =−
e2

12π2 (γE − ln 4π)− e2

2π2

∫ 1

0
dz z(1− z) ln

m2− k2z(1− z)
µ2 . (6.19)
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Modified minimal subtraction

Sometimes the choice

Π(k2)div =
e2

6π2
1
ε
− e2

12π2 (γE − ln 4π) (6.20)

is made. Then

Π(k2) f in =−
e2

2π2

∫ 1

0
dz z(1− z) ln

m2− k2z(1− z)
µ2 . (6.21)

6.3 Other Renormalization Group equations

6.3.1 ’t Hooft-Weinberg Equation

The ’t Hooft - Weinberg renormalization group equation is associated with minimal subtraction
scheme in the context of dimensional regularization. In this scheme, the bare mass and the bare
coupling does not depend on µ , the arbitrary mass scale introduced to keep the dimension of
Lagrangian density fixed at d in d space-time dimensions. It follows that the renormalized masses
and couplings depend on it. In the minimal subtraction scheme, the renormalization constants do
not depend explicitly on µ . Their dependence on µ is entirely through their dependence on gR

which in turn depends on µ . It follows that

d
dµ

Γ
(n)(p,g,m) = 0 (6.22)

where Γ(n)(p,g,m) is the bare, amputed, 1PI Greens function which depends on the bare parame-
ters m and g. But

Γ
(n)(p,g,m) = Z−

n
2 Γ

(n)
R (p,gR,mR,µ) (6.23)

where Γ
(n)
R (p,gR,mR,µ) is the renormalized amputed, 1PI Greens function. Substituting Eq. (6.23)

in to Eq. (6.22), we get the ’t Hooft - Weinberg renormalization group equation[
µ

∂

∂ µ
+β (gR)

∂

∂gR
− γm(gR) mR

∂

∂mR
−nγ(gR)

]
Γ
(n)
R (p,gR,mR,µ) = 0. (6.24)

Here

β (gR) = µ
∂ gR

∂ µ

γm(gR) = − µ

mR

∂ mR

∂ µ

γ(gR) =
µ

2Z
∂Z
∂ µ

. (6.25)

The ’t Hooft-Weinberg equation given in Eq. (6.24) shows the invariance of physical observables
with respect to the choice of the arbitrary mass scale µ in the minimal subtraction scheme in the
context of dimensional regularization.
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6.3.2 Gell-Mann - Low Equation

In the Gell-Mann - Low renormalization scheme, mass renormalization is done on-shell but
other subtractions are done off-shell. Let µ denote this off-shell scale (k2 = −µ2). Thus mR, the
renormalized mass is the physical mass which does not depend on µ . Now, β and γ can depend on
gR and mR

µ
. Thus the Gell-Mann-Low renormalization group equation is

[
µ

∂

∂ µ
+β (gR,

mR

µ
)

∂

∂gR
−nγ(gR,

mR

µ
)

]
Γ
(n)
R (p,gR,mR,µ) = 0. (6.26)

6.4 Where is the group in Renormalization Group?

There is three-fold arbitrariness in the process of renormalization.

ê Arbitrariness in the choice of regulator

ê Within a regulator, arbitrariness in the choice of subtraction scheme.

ê Within a subtraction scheme, arbitrariness in the choice of subtraction point.

In this discussion we follow Wilson [32]. In a particular renormalization scheme, call Γµ and ΓB

the renormalized and bare 1PI amputed Greens functions. The subscript µ denotes the subtraction
point. We write

Γµ = Z(µ) ΓB (6.27)

where Z(µ) denotes the appropriate product of renormalization constants defined within one scheme.
If we choose another subtraction point µ ′,

Γµ ′ = Z(µ ′) ΓB . (6.28)

Thus

Γµ ′ =
Z(µ ′)
Z(µ)

Γµ = Z(µ ′,µ) Γµ . (6.29)

By definition, Z(µ ′,µ) is finite. Since Z is dimensionless, it follows that Z(µ ′,µ) = Z(µ ′

µ
). Let us

denote s = µ ′

µ
.

Let us now consider a set of all possible Z(s) for arbitrary s.
Unit element exists, Z(s = 1) = 1.
For every element Z(s), there is an inverse Z−1(s) = Z(s−1).

Multiplication law: Z(s′) Z(s′′) = Z(s′ s′′) provided s′ = µ ′

µ ′′ , s′′ = µ ′′

µ ′′′ .
Note that the multiplication law does not hold for arbitrary Z(s′) and Z(s′′).
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Let us consider an example explicitly in perturbation theory to order α . We consider the vac-
uum polarization in QED in Pauli-Villars regularization scheme with off-shell subtraction scheme
(subtraction done at k2 =−λ 2). Then

Z(λ ) = Z3(λ ) = 1−2
α

π

∫ 1

0
dzz(1− z) ln

[
Λ2

m2 +λ 2z(1− z)

]
. (6.30)

Then

Z
(

λ2

λ1

)
= 1+2

α

π

∫ 1

0
dz z(1− z) ln

[m2 +λ 2
2 z(1− z)

m2 +λ 2
1 z(1− z)

]
(6.31)

It follows that

Z
(

λ2

λ1

)
Z
(

λ1

λ3

)
= Z

(
λ2

λ3

)
. (6.32)

In the limit of zero electron mass (see Ref. [32]),

Z
(

λ2

λ1

)
= 1+

α

3π
ln

λ 2
2

λ 2
1
. (6.33)

Then it follows that for any two elements Z
(

λ2
λ1

)
and Z

(
λ3
λ4

)
of the group

Z
(

λ2

λ1

)
Z
(

λ3

λ4

)
= Z

(
λ5

λ6

)
(6.34)

where Z
(

λ5
λ6

)
is another element of the group with λ5 = λ2 λ3 and λ6 = λ1 λ4.

6.5 Summary and Concluding Remarks

Let us now summarize what we have seen. After a very brief look at scale symmetry in classical
and quantum mechanics, we reviewed the idea of scale invariance in classical and quantum field
theory. The concepts of scale dimension and the conservation of scale current were discussed and
we learned why scale symmetry is an unwanted symmetry quite unlike other beloved symmetries
like Lorentz symmetry and gauge symmetry.

Next we derived the Ward identity of broken scale invariance following standard manipulations
utilizing the divergence of scale current. By some examples we learned why it is too naive. We,
then, proceeded to learn how to fix it. We saw that a divergent wave function renormalization
constant leaves its mark in the renormalized theory in the form of finite anomalous dimension
which signals a deviation from canonical scale dimension. If this was all there is to it, we would
again recover scaling behaviour with naive scale dimensions modified by anomalous dimensions.

Following Wilson, we arrived at another, more significant departure from canonical behaviour
arising from scale dependence of couplings. This scale dependence is governed by the so-called
β function. The last and final modification to the naive Ward identity arose from the need to
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accommodate this effect. It turns out that β function controls the fate of quantum field theories as
one tries to remove the cut-off.

Incorporation of all the changes converts the naive Ward identity to the famous Callan-Symanzik
renormalization group equation which uses on-shell subtraction scheme. We saw some drawbacks
of on-shell renormalization scheme and saw the usefulness of off-shell subtraction the utility of
which was first brought to light by Gell-Mann and Low. We looked at the Gell-Mann Low renor-
malization equation. For non-abelian gauge theories, perturbative calculations are most conve-
niently carried out by dimensional regularization and the minimal subtraction scheme. We also
took a look at the resulting renormalization group equation first written down (independently) by
’t Hooft and Weinberg.

At the very end we tried to understand the group in renormalization group. In the particular
example we looked at, namely, one loop vacuum polarization with off-shell subtraction and zero
electron mass, we do find a group associated with the changes of scale chosen for subtraction.
Physics remains invariant under such changes of scale.

We have left out many topics, especially the applications of perturbative renormalization group.
We have also left out the most important subject, Wilson formulation of non-perturbative renor-
malization group. That, however, is the subject of an entirely different lecture series.
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