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Empirical Analysis of 20 Global Financial Indices
Daily closing prices (July, 1997 to June, 2009) 
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Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia          
6. Malaysia 7. Mexico 8. South Korea 9. Taiwan 
10. Australia 11. Austria 12. France 13. Germany 
14. Hong Kong 15. Israel 16. Japan 17. Singapore 
18. Switzerland 19. UK 20. US 
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There are Differences in public holidays or weekends among countries (so we shifted the data 
according to the rule that) when more than 30 % of markets did not open on a particular day, 
we remove that day from the data, and when it is below 30 %, we kept existing indices and 
inserted the last closing price for each of the remaining indices. 
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Global Financial Crisis of 2008
Closing Prices: Before the Crisis

(June, 2006 to November, 2007)
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Recession Period

Global Financial Crisis of 2008
Closing Prices: During the Crisis

(December, 2007 to June, 2009)
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Global Financial Crisis of 2008
Closing Prices: After the Crisis

(January, 2010 to June, 2011)
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Volatility: Measure of fluctuations (global financial crisis of 2008)
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Random Matrix Theory Approach 

iP (t) Daily closing prices of financial indices  i (i = 1,..,N) at time t (t = 1,..,T)

i i iR ( t ) ln P ( t 1) ln P ( t )≡ + −Log-returns:

i i
i

i

R ( t ) R
r ( t )

σ

−
≡ 2 2

i i iσ R R≡ 〈 〉 − 〈 〉Normalized returns:                                                    where

Cross-correlation matrix (C) is computed with elements,

which are limited to the domain [-1,1]                              

Perfect correlation
Perfect anti-correlation
No correlation

ijC 1=
ijC 1= −
ijC 0=

ij i jC r (t)r (t)≡ 〈 〉

Cross-correlation matrix (C) is computed with elements,



Distribution of correlation coefficients (Cij)

0.040.040.040.04

0.050.050.050.05

0.060.060.060.06

0.070.070.070.07

0.080.080.080.08

0.090.090.090.09

0.10.10.10.1

 P
(C

 P
(C

 P
(C

 P
(C

ijij ijij)) ))

 

During crisisDuring crisisDuring crisisDuring crisis
Before crisisBefore crisisBefore crisisBefore crisis
After crisisAfter crisisAfter crisisAfter crisis

0.040.040.040.04

0.050.050.050.05

0.060.060.060.06

0.070.070.070.07

0.080.080.080.08

0.090.090.090.09

0.10.10.10.1

 P
(C

 P
(C

 P
(C

 P
(C

ijij ijij)) ))

 

During crisisDuring crisisDuring crisisDuring crisis
Before crisisBefore crisisBefore crisisBefore crisis
After crisisAfter crisisAfter crisisAfter crisis

Average magnitude of correlation, <|C|> = 0.435 (before the crisis) 
<|C|> = 0.463 (during the crisis)
<|C|> = 0.415 (after the crisis)
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Eigenvalue distribution: N = 20 indices, T = 387 days, Q=19.35Eigenvalue distribution: N = 20 indices, T = 387 days, Q=19.35Eigenvalue distribution: N = 20 indices, T = 387 days, Q=19.35Eigenvalue distribution: N = 20 indices, T = 387 days, Q=19.35
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Eigenvalue distribution: N = 20 indices, T = 387 days, Q=19.35

Before the crisis λλλλ min = 0.0527    and λλλλ max= 9.045 
During the crisis λλλλ min = 0.0388    and   λλλλ max = 9.528

After the crisis λλλλ min = 0.0505    and   λλλλ max = 8.977

Random Matrix Theory Prediction        λλλλr m 
min = 0.597     and λλλλr m

max = 1.506

Experimentally: Global financial indices

Significant deviation in eigenvalues from upper bound

If there is no correlation in financial indices Eigenvalues should be bounded                                  
between RMT predictions.

Strong correlation in                                                                                                    
global financial indices.



Components of eigenvectors corresponding to First largest eigenvalue
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All eigenvector  
components are 
positive which 
reflects a common 
global financial 
market mode
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Components of eigenvectors corresponding to Second largest eigenvalue

The positive significant 
contributions of components are 
associated with the cluster of 
American(Argentina, Brazil 
Mexico, United States)  and
European(Austria, France, 
Germany, Switzerland) indices. 

Global financial indices 
form two clusters in 

positive and negative 
directions.
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The negative significant 
contributions are associated 
with cluster of indices 
corresponding to 
Asia-Pacific(Egypt, India, 
Indonesia, Malaysia, South 
Korea, Taiwan, Australia, Hong 
Kong, Japan, Singapore)

The components of these 
two clusters switch in 

opposite direction during 
the crisis period.
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� First few largest eigenvalues deviates significantly from the RMT prediction and 
these deviation changes before, during, and after the crisis of 2008.

� The largest eigenvalue represent the collective information about the correlation 
between different indices and its trend is dependent on the market conditions.

� Components of eigenvectors corresponding to second largest eigenvalue form two 
clusters of indices in the positive and negative directions. The components of these 
two clusters switch in opposite directions during the financial crisis 2008. 

Conclusion (RMT analysis)

two clusters switch in opposite directions during the financial crisis 2008. 

� We find that RMT analysis of correlation matrices provides some information about 
the formation of clusters of indices.

� We use the techniques of network analysis to study these clusters clearly. 



The edges (E) in graph G = (V,E) are defined by

eij = 1,     i ≠ j and Cij ≥ θ

Construction of networks

(i) Correlation threshold Method:

Let set of financial indices defines the set of vertices of the network. 

Specify a certain threshold θ (-1 ≤ θ ≤1) and add an undirected edge connecting the 
vertices i and j if Cij is greater than or equal to θ.

eij = 1,     i ≠ j and Cij ≥ θ
E =  {

eij = 0,     i = j

Thus, different values of θ generate networks with same set of vertices, but  different 
set of edges.

We have used the Fruchterman-Reingold layout to analyze the cluster structure in 
complex networks. 



Correlation network of global financial indices 

Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 6. Malaysia 7. Mexico 8. South Korea 9. Taiwan 
10. Australia 11. Austria 12. France 13. Germany 14. Hong Kong 15. Israel 16. Japan 17. Singapore 
18. Switzerland 19. UK 20. US 

Threshold (θ) = 0.1 Before the crisis 



Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 
6. Malaysia 7. Mexico 8. South Korea 9. Taiwan 
10. Australia 11. Austria 12. France 13. Germany 
14. Hong Kong 15. Israel 16. Japan 17. Singapore 
18. Switzerland 19. UK 20. US 

Threshold (θ) = 0.2 Before the crisis 
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Threshold (θ) = 0.3 Before crisis

Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 
6. Malaysia 7. Mexico 8. South Korea 9. Taiwan 
10. Australia 11. Austria 12. France 13. Germany 
14. Hong Kong 15. Israel 16. Japan 17. Singapore 
18. Switzerland 19. UK 20. US 
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Threshold (θ) = 0.4 Before crisis

Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 6. Malaysia 7. Mexico 
8. South Korea 9. Taiwan 10. Australia 11. Austria 12. France 13. Germany 
14. Hong Kong 15. Israel 16. Japan 17. Singapore 18. Switzerland 19. UK 20. US 



Threshold (θ) = 0.5 Before crisis
Countries:
1. Argentina 2. Brazil 4. India 5. Indonesia 6. Malaysia 7. Mexico 8. South Korea 9. Taiwan 10. 
Australia 11. Austria 12. France 13. Germany 14. Hong Kong      16. Japan 17. Singapore 18. 
Switzerland 19. UK 20. US 
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Threshold (θ) = 0.6 Before crisis
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11. Austria 12. France 13. Germany 
18. Switzerland 19. UK  

3. Egypt
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Threshold (θ) = 0.7 Before crisis

5. Indonesia 14. Hong Kong 
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Threshold (θ) = 0.8 Before crisis
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Threshold (θ) = 0.9 Before crisis
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Threshold (θ) = 0.6 Before crisis

1. Argentina 2. Brazil
7. Mexico 20. US 

11. Austria 12. France 13. Germany 
18. Switzerland 19. UK  

3. Egypt
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9. Taiwan 8. South Korea  
14. Hong Kong 10. Australia 
16. Japan 17. Singapore  
4. India

3. Egypt

5. Indonesia 

Asia/pacific

Threshold (θ) = 0.6 During crisis
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Hierarchical method: Minimum Spanning Tree ( MST )

Spanning tree is a graph without loops connecting all the N nodes with N-1 links. The 
MST is the spanning tree of shortest length. 

We construct the network of financial indices by using the metric distances dij = √2( 1-Cij )  
forming a N x N distance matrix whose elements lies between 0 and 2. 

The number of possible nodal connections is very large i.e. N(N-1)/2. The MST reduces 
this complexity by showing only N-1 most important non redundant connections in a 

We have used the Prim’s algorithm to draw the MST.  It is a greedy algorithm that finds a 
MST for a connected weighted undirected graph. It finds a subset of edges that forms a 
tree that include every vertex , where total weight of all edges in the tree is minimized.

this complexity by showing only N-1 most important non redundant connections in a 
graphical manner.



Minimum Spanning Tree (Before the crisis)

With France (Europe), 
Brazil (Americas) and 
Singapore, South Korea 
(Asia-Pacific) 
as the hub vertices as the hub vertices 
the structure of MST is 
more star like.



Minimum Spanning Tree (During the crisis)

With France (Europe) 
Brazil (Americas), 
Hong Kong,  
South Korea and 
Australia (Asia-Pacific)  
as hub vertices the 
structure of MST is structure of MST is 
more chainlike.



Minimum Spanning Tree (After the crisis)

With France (Europe), 
US (America) and 
Australia, Singapore,
(Asia-Pacific) 
as the hub vertices 
the structure of MST is 
more star like.
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Hierarchical Clustering: Average linkage hierarchical clustering algorithm is applied 
to the distance matrix to produce the best treelike dendrogram.
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This shows that the European-American indices interact (correlate) strongly while the Asia-
Pacific indices (including Egypt and Israel) correlate weakly during the crisis. France is the tightly 
linked index in the European cluster. 

During the crisis, the height of dendrogram of the European-American cluster decreases while the 
height of dendrogram of Asia-Pacific cluster increases. 

This further distinguishes the behavior of the European-American cluster from the Asia-
Pacific cluster and indicate that hierarchy of European and American indices increases while the 
hierarchy of Asia-Pacific indices decreases during the crisis.



Hierarchical Clustering
In hierarchical clustering objects are categorized into hierarchy similar to a tree like structure which 
is called a dendrogram. The dendrogram displays both the cluster-sub cluster relationship and the 
order in which the clusters were merged. 

The nodes of dendrogram represent clusters and length of stems (heights) represent the distances 
at which the clusters are joined . By cutting the dendrogram at different heights we can easily 
determine the number of clusters.

Cophenetic matrix is generated from the dendrogram. Its elements are the branch distance where 
two objects become members of the same cluster in the dendrogram: for two nodes I, j we find the 
nearest common bifurcation point, the branch length for this point is the cophenetic element (cij) of 
these two nodes.  
The Cophenetic Correlation Coefficient* (CCC) is defined as

* J. He and M. W. Deem, Phy. Rev. Lett. 105, 198701 (2010)

The Cophenetic Correlation Coefficient* (CCC) is defined as

where dij and <d> are the element and  average of element of distance matrix and 
cij and <c> are the elements and average of elements of cophenetic matrix respectively.  
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The value of CCC is found to be 0.903 (before crisis ), 0.933 (during crisis),  0.921 (after crisis).  
We observe a significant change* in case of financial indices during the period of crisis.
This indicates that hierarchy in financial indices  increases during the crisis of 2008.



� Using RMT we find that there are major changes in the correlation before, during and after 
the global financial crisis of 2008. 

� We apply techniques of complex network to study the structure and dynamics of global 
financial network before, during, and after the crisis.
� We construct networks at different correlation thresholds before, during and after the global 
financial crisis of 2008. Fruchterman-Reingold layout is used to find clusters in global financial 
markets.
� At threshold 0.6, we find that indices corresponding to the American, European and Asia-
pacific forms separate clusters before the crisis but during the crisis period American and 
European indices combined to form a strongly linked cluster while the Asia-Pacific form 
a separate weakly linked cluster. When the value of threshold is further increased to 0.9 

Conclusion

a separate weakly linked cluster. When the value of threshold is further increased to 0.9 
then the European indices (France, Germany and UK) are found to be the most tightly linked 
indices.

� Structure of MST is more star like before crisis and it changes to more chainlike during the 
crisis. After the crisis, the structure is found to be more star like.
� Our findings show that there are major changes in the structure of organization of financial 
indices during the financial crisis of 2008.

� Studying the crisis and finding the organizational changes of clusters during crisis period is 
useful and interesting as similar changes may occur during other crisis, leading to innovative 
ways for prevention and control.



Thank YouThank You
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Conclusion

• We investigate and compare the structure and dynamics of a random 
system and financial system by using three methods: 
Random matrix theory and Network analysis.

• Using RMT we find that there are major changes in the structure of 
organization of global financial indices during the financial crisis.

• We apply techniques of complex network to study the structure and 
dynamics of global financial network before and during crisis. There is a 
change in the structure of organization of financial indices during the 
crisis

• Studying the crisis and finding the organizational changes of clusters 
during crisis period is useful and interesting as similar changes may 
occur during other crisis, leading to innovative ways for prevention and 
control.



� We constructed networks at different threshold (in the range 0 to 0.9) before, during and 
after the global financial crisis of 2008. Fruchterman-Reingold layout is used to find clusters 
in global financial markets.

� At threshold 0.6, we find that indices corresponding to the American, European and Asia-
pacific forms separate clusters before the crisis but during the crisis period American and 
European indices combined to form a strongly linked cluster while the Asia-Pacific 
form a separate weakly linked cluster.

� When the value of threshold is further increased to 0.9 then the European indices 

Conclusion (Network Analysis)

(France, Germany and UK) are found to be the most tightly linked indices.

� Structure of MST is more star like before crisis and it changes to more chainlike during 
the crisis. After the crisis, the structure is found to be more star like. 

� In MST, the financial indices are found to be organized by their geographical region.

� Our findings show that there are major changes in the structure of organization of 
financial indices during the financial crisis.



Structure of the network:Structure of the network:

During crisis: During crisis: Threshold Threshold θθ = 0.1= 0.1θθ

Countries:Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 6. Malaysia 7. Mexico 8. South Korea 1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 6. Malaysia 7. Mexico 8. South Korea 
9. Taiwan 10. Australia 11. Austria 12. France 13. Germany 14. Hong Kong 15. Israel 16. 9. Taiwan 10. Australia 11. Austria 12. France 13. Germany 14. Hong Kong 15. Israel 16. 
Japan 17. Singapore 18. Switzerland 19. UK 20. US Japan 17. Singapore 18. Switzerland 19. UK 20. US 

Threshold (θ) = 0.1 During the crisis

Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 6. Malaysia 7. Mexico 8. South Korea 9. Taiwan 
10. Australia 11. Austria 12. France 13. Germany 14. Hong Kong 15. Israel 16. Japan 17. Singapore 
18. Switzerland 19. UK 20. US 

Correlation Network of global financial indices 

09/24/1109/24/11 3939



Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 6. Malaysia 7. Mexico 8. South Korea 
9. Taiwan 10. Australia 11. Austria 12. France 13. Germany 14. Hong Kong 15. Israel 16. Japan 
17. Singapore 18. Switzerland 19. UK 20. US 

Threshold (θ) = 0.2 During the crisis 

4040



Threshold (θ) = 0.3 During crisis

Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 
6. Malaysia 7. Mexico 8. South Korea 9. Taiwan 
10. Australia 11. Austria 12. France 13. Germany 
14. Hong Kong 15. Israel 16. Japan 17. Singapore 
18. Switzerland 19. UK 20. US 

4141



3. Egypt 

Threshold (θ) = 0.4 During crisis

America+Europe+
Asia/pacific

09/24/1109/24/11 4242

Countries:
1. Argentina 2. Brazil 3. Egypt 4. India 5. Indonesia 6. Malaysia                       7. 
Mexico 8. South Korea 9. Taiwan 10. Australia 11. Austria           12. France 13. 
Germany 14. Hong Kong 15. Israel 16. Japan 
17. Singapore 18. Switzerland 19. UK 20. US 



4. India 14. Hong Kong 17. Singapore 16. Japan
8. South Korea 9. Taiwan 10. Australia 6. Malaysia 
5. Indonesia15. Israel 

Threshold (θ) = 0.5    During crisis

Asia/Pacific

4343

3. Egypt 

1. Argentina 11. Austria 
13. Germany 2. Brazil    
7. Mexico 11. Austria
12. France 13. Germany 
18. Switzerland 19.UK  
20. US

America+Europe



9. Taiwan 8. South Korea  
14. Hong Kong 10. Australia 
16. Japan 17. Singapore  
4. India

3. Egypt

5. Indonesia 

Asia/pacific

Threshold (θ) = 0.6 During crisis

4444

15. Israel

6. Malaysia 

1. Argentina 2. Brazil     
7. Mexico 19.UK           
12. France 13. Germany 
11. Austria 18. Switzerland 
20. US

America+Europe



Threshold (θ) = 0.7 During crisis

11. Austria 12. France 
13. Germany 18. Switzerland 
19.UK          

14. Hong Kong 
17. Singapore

Europe Asia/Pacific

4545

16. Japan 
10. Australia
8. South Korea

1. Argentina 2. Brazil   
7. Mexico 20. US

Asia/Pacific

America



12. France 19.UK 
18. Switzerland 
13. Germany 

Threshold (θ) = 0.8 During crisis

Europe

09/24/1109/24/11 4646

2. Brazil     
7. Mexico

America



12. France
13. Germany 
19. United kingdom

Threshold (θ) = 0.9 During crisis

Europe

09/24/1109/24/11 4747
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Hierarchical Clustering: Average linkage hierarchical clustering algorithm is applied 
to the distance matrix to produce the best treelike dendrogram.
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Dendrogram 
representation of the 
random correlation 

matrix
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From the random correlation matrix, the value of CCC is found to be 0.3414

In case of global financial indices, the value of CCC increases from 0.903 (before crisis ) to 
0.933 (during crisis) which is a significant change* in case of financial indices 0.921 (after 
crisis.  
This indicates that hierarchy in financial indices  increases during the crisis of 2008.



RMT approach to a random system

Log-returns computed from the random numbers having zero mean and unit variance



Random numbers with zero 
mean and unit variance

Log-returns:          

Normalized returns:
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RMT approach to a random system

Rij is computed using N=1000 random time 
series of length T=3088.

ijR 0.001〈 〉 =

here

Random correlation matrix (R) is 
computed with elements,

Which are limited to the domain [-1,1]                              

Perfect correlation
Perfect anti-correlation
No correlation
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Statistics of eigenvalues of random correlation matrix

For the Wishart matrix (R), with Q = T/N(>1), probability distribution of eigenvalues,  

within the bounds                                 and is 0 otherwise.             

rm rm rm rm
m a x m inrm

r m rm
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− −
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rm rm rm
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For Q=3.088, smallest(largest) eigenvalue given by                                                  is 0.1857(2.462) rm 2
m in (m a x)λ [1 (1 / Q )]= m

rm
min(max)λ 0.0824(2.905)=

Numerically, for random 
correlation matrix, we find
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Components of eigenvectors corresponding to first largest eigenvalue
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Components of eigenvectors corresponding to second largest eigenvalue

Random 
Correlation Matrix
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Eigenvector components are distributed in 
positive side only for financial indices.

RMT 
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Eigenvector distribution follow the
Gaussian distribution having 
zero mean and unit variance
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Random correlation networks at different threshold
q=0.1 q=0.2

q=0.5

q=0.9



Minimum Spanning Tree (Random correlation matrix)



Introduction: What is econophysics?Introduction: What is econophysics?Introduction: What is econophysics?Introduction: What is econophysics?
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A force based (or directed) algorithm which assign forces among the set of 
edges and set of nodes.

1. Assign forces as if edges were springs (Hooke’s law) and nodes were   
electrically charged particles (coulomb’s law). 

2. Entire graph is then simulated as if it were a physical system. 
Forces are applied to nodes, pulling them closer or pushing them further   

Fruchterman-Reingold Algorithm:

Analysis of complex networks

Forces are applied to nodes, pulling them closer or pushing them further   
apart. 

3. This is repeated iteratively until the system comes to equilibrium 
state (their relative positions do not change anymore). At that moment the     
graph is drawn. 

Physical interpretation of this equilibrium state is that all forces are in 
mechanical equilibrium.

Advantage: Good quality results, flexibility, intuitive, simplicity and strong foundation.



Topological structure of financial networksTopological structure of financial networksTopological structure of financial networksTopological structure of financial networks
(A) ) ) ) DEGREE DISTRIBUTIONDEGREE DISTRIBUTIONDEGREE DISTRIBUTIONDEGREE DISTRIBUTION: : : : The degree of  vertex i can be defined as Ki=∑ (eij). 

j≠I
The mean degree is based upon the degree and shows how many neighbors a node 
in the network has on average. 
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increase in the increase in the increase in the increase in the 
threshold as the threshold as the threshold as the threshold as the 
number of connected number of connected number of connected number of connected 
vertices decreases vertices decreases vertices decreases vertices decreases 
with increase in with increase in with increase in with increase in 
threshold.threshold.threshold.threshold.



Topological structure of financial networksTopological structure of financial networksTopological structure of financial networksTopological structure of financial networks
(B) (B) (B) (B) CLUSTERING COEFFICIENTSCLUSTERING COEFFICIENTSCLUSTERING COEFFICIENTSCLUSTERING COEFFICIENTS:  If ki nearest neighbors of vertex i have mi edges among 
them, the ratio of mi to ki (ki-1)/2 is the clustering coefficient of vertex i.
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The global clustering 
coefficient is simply the 
ratio of triangles and 
connected triples in the 
correlation network of 
financial indices.
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financial indices.

At θ = 0.9 there is no 
formation of triangles in 
the global financial 
network therefore its 
clustering coefficient is 
zero. 



16161616

18181818

20202020

22222222

C
o

m
p

o
n

e
n

t 
N

u
m

b
e

r
C

o
m

p
o

n
e

n
t 

N
u

m
b

e
r

C
o

m
p

o
n

e
n

t 
N

u
m

b
e

r
C

o
m

p
o

n
e

n
t 

N
u

m
b

e
r

 

DuringDuringDuringDuring
Before Before Before Before 

Component number in 
financial correlation 
network represents the 
financial indices that 
are correlated with 

Topological structure of financial networksTopological structure of financial networksTopological structure of financial networksTopological structure of financial networks
(C) CONNECTED COMPONENTSCONNECTED COMPONENTSCONNECTED COMPONENTSCONNECTED COMPONENTS: : : : If the graph G=(V,E) is disconnected, it can be 
decomposed into several sub graphs which are known as connected components of G.
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are correlated with 
each other. 

At θ > 0.9 vertices are 
nearly all isolated so 
the component number 
is approximately the 
vertex number.
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A maximum clique is a 
clique of the largest 
possible size in a 
graph.

(D) CLIQUECLIQUECLIQUECLIQUE: : : : A clique in an undirected graph is a subset of its vertices such that every 
two vertices in the subset are connected by an edge.

Topological structure of financial networksTopological structure of financial networksTopological structure of financial networksTopological structure of financial networks
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In the network of 
financial indices, clique 
finds the cluster of 
indices that interact 
closely with each other. 



National Stock Exchange (NSE)

• Largest Stock exchange in India
• Third largest in the World in terms of volume 

transactions
• S&P CNX Nifty(nifty50 or simply nifty):

• The leading index for large companies on National 
Stock Exchange of India

• Well diversified 50 stock index accounting for 22 • Well diversified 50 stock index accounting for 22 
sectors for the economy

• Used for variety of purposes such as benchmarking 
fund portfolios, index based derivatives and mutual 
funds



Bombay Stock Exchange

• Largest Stock exchange of Asia
• Established in 1875
• One of the Oldest Stock exchange in the world

• Around 4,800 companies are listed.
• BSE Sensex is widely used as market index for the 

BSEBSE
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Largest eigenvalues represents the collective information about the correlation between 
different indices and its trend depends on the global financial market conditions. 

There is an increase in first and second largest eigenvalue during financial crisis while  
third largest eigenvalue do not show significant variation as it is near RMT bound.



The inverse of the number of eigenvector components that contribute significantly to each 
eigenvector. IPR of eigenvectors uk is defined by 

N        k      4

Ik ≡ ∑ [ u
l  

]
l=1

where ul
k , l = 1,….,N are components of eigenvector uk.

Inverse Participation RatioInverse Participation RatioInverse Participation RatioInverse Participation Ratio

0.14

0.15  

Observed IPR Moving time windows of 25 days for (u20)

Dashed line marks the IPR value 0.05  ( = 1/20) when all components contribute equally.
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---------  IPR = 0.05

Moving time windows of 25 days for (u )



Clusters:

America : 1. Argentina 2. Brazil 7. Mexico 20. US 

Europe : 11. Austria 12. France 13. Germany 18. Switzerland 19. UK

Asia-Pacific : 10. Australia 14. Hong Kong 4. India 5. Indonesia 6. Malaysia 
16. Japan 17. Singapore 8. South Korea 9. Taiwan 

7070

Africa-Middle East:  3. Egypt 15. Israel



Topological properties of random correlation networks
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Topological properties of global financial networks
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