## Nonlinear dynamics of stock markets during critical periods



#### Dr Kousik Guhathakurta

Indian Institute of Management Kozhikode

#### Contents

- Background & Literature
- Recent Developments
- Motivation
- Present Work
- Crashes
- Data
- Methodology
- Results
- Discussion
- Conclusions
- References

- Stock market crashes : a subject of intimate study in financial economics literature
- From (Fisher, 1930) to Lauterbauch et al.
  (2012):
  - reasons, nature and impact of stock market crashes have been analysed in a various ways by various authors

- Behavioural
  - Galbraith (1954), Kindleberger (1978)
  - (Shiller R. J., 1987)tries to provide a behavioural finance perspective to stock market crashes
  - (Bereave & Veronesi, 2003): focus on microbehaviour of traders and information asymmetry
  - Li et al.(2009) identify a Bayesian investor's belief evolution when facing a structural break in economy and links it to the bubbles and crashes

- Empirical studies on financial market crashes
  - (Barro, 1990)
  - Ding, Granger, & Engle(1993)
  - (Longin, 1996)
  - (Choudhry, 1996),
  - (Yang & Min, 2003)
  - Lauterbauch et al. (2012)

- 1987 Black Monday
  - (Shiller R. J., 1987)
  - (Seyhun, 1990)
  - (Harris, 1989)
  - (Mitchell & Netter, 1989)
  - (Bates, 1991)
- Tech bubble
  - (Griffin & Topaloglu, 2011)

#### **Recent Developments**

- Apart from traditional econometric modelling
- Considerable research work towards modelling financial crashes based on analogies from physics
- Close to a crash the market behaves like a thermodynamic system which undergoes phase transition
- crashes as critical points in a system
- log-periodic fluctuations in stock market indices
- earthquake-stock market analogy
  - (Feigenbaum & Freund, 1996), (Feigenbaum & Freund, 1998)

#### **Recent Developments**

- Slow build up of long-range correlations between traders
- leading to a collapse of the stock market
- A crash : interpreted as a critical point
  - Sornette D. A., 1996)
  - (Sornette, Johansen, & Bouchaud, 1996)
- An analogy between crashes and phase transition
  - (Sornette & Johansen, 1999)
  - (Johansen & Sornette, 1999),
  - (Vandewalle, Ausloos, Boveroux, & Minguet, 1998),
    (Vandewalle, Boveroux, Minguet, & Ausloos, 1998)
  - (T. Kaizoji, D. Sornette ,2009)

#### **Recent Developments**

- Standard econometric models it is not possible to detect the bubble in advance or predict a crash even in approximate terms
- Technique evolved from nonlinear dynamics and physics : Recurrence Plot
- possible to graphically represent the dynamic evolution of a system

#### Motivation

- Recurrence Plot(RP) can detect critical phases in the system and changes in the same
- Inspired by this (Fabretti & Ausloos, 2005) first show
  - that using recurrence plot and its quantification one can detect endogenous crashes
- (Guhathakurta, Bhattacharya, & Roychowdhury, 2009), (Guhathakurta, Bhattacharya, & Roychowdhury, 2010a), (Guhathakurta, Bhattacharya, & Roychowdhury, 2010b) further established the tool
- (Bastos & Caiado, 2011) reinforced their findings.

#### Present Work

- Extends the original findings of Guhathakurta et al. (2010b) by analysing eight different financial crashes at different times
- Purpose
  - Identify the critical phases
- understand the dynamics of the stock market during such periods
- Using the recurrence statistics, we show
  - it is possible to detect critical periods in advance for all the cases where there was a known bubble building up in the market

### Crashes

- Black Monday (Oct 19, 1987) Crash, Hong Kong AOI
- The Friday the 13th mini-crash (Oct 13,1989) Dow Jones Industrial Average (DJIA)
- Japanese bubble (1986-91), NIKKEI
- October 27, 1997 mini-crash, Hang Seng
- 11 Sept NYSE , 2001 crash, DJIA
- Stock market downturn of 2002, DJIA
- China 2007 Crash, CSI300
- 2010 Flash crash, DJIA

#### Data & Software

- Our analysis covers eight different stock market crashes which occurred in different stock exchanges across the world.
- The data for analysis was the closing value of the respective stock indices.
- All the analysis was carried out on MATLAB platform.

Definition: A recurrence plot (RP) is a graph that shows all those times at which a state of the dynamical system recurs. In other words, the RP reveals all the times when the phase space trajectory visits roughly the same area in the phase space.

- A phase space, introduced by Willard Gibbs in 1901, is a space in which all possible states of a system are represented, with each possible state of the system corresponding to one unique point in the phase space.
- In a phase space, every degree of freedom or parameter of the system is represented as an axis of a multidimensional space.

- For every possible state of the system, or allowed combination of values of the system's parameters, a point is plotted in the multidimensional space.
- Often this succession of plotted points is analogous to the system's state evolving over time.
- In the end, the phase diagram represents all that the system can be, and its shape can easily elucidate qualities of the system that might not be obvious otherwise.

- Eckmann et al. (1987) have introduced a tool which can visualize the recurrence of states xi in a phase space
- Usually, a phase space does not have a dimension (two or three) which allows it to be pictured
- Eckmann's tool enables us to investigate the m-dimensional phase space trajectory through a two-dimensional representation of its recurrences.

- Such recurrence of a state at time i at a different time j is marked within a two-dimensional squared matrix with ones and zeros dots (black and white dots in the plot), where both axes are time axes
- This representation is called recurrence plot (RP). Such an RP can be mathematically expressed as
- Ri,  $j = \Theta(\varepsilon i ||xi xj||)$ ,  $xi \in \Re m$ , i, j=1...N,
- where Ri, j is the recurrence plot. N is the number of considered states xi, εi is a threshold distance, || · || a norm and Θ(·) the Heaviside function
- The Heaviside step function is given by:
  Θ(x) = 0 if x<0</li>
- $\Theta(x) = 1$  if  $x \ge 0$

- Structures in Recurrence Plots
- Homogeneous RPs are typical of stationary and autonomous systems. Ex-a random time series
- Oscillating systems have RPs with diagonal oriented, periodic recurrent structures (diagonal lines, checkerboard structures
- Abrupt changes in the dynamics as well as extreme events cause bands in the RP



(A) homogeneous (uniformly distributed noise),

- (B) periodic (super-positioned harmonic oscillations)
- (C) disrupted (Brownian motion).

## RECURRENCE QUANTIFICATION ANALYSIS

%DET: the percentage of recurrent points forming line segments parallel to the main diagonal. The presence of these lines reveals the existence of a deterministic structure.

$$DET = \frac{\sum_{l=l_{min}}^{N} lP(l)}{\sum_{l=1}^{N} lP(l)},$$

## RECURRENCE QUANTIFICATION ANALYSIS

The *average diagonal line length L* gives the average time that two segments of the trajectory are close to each other, and can be interpreted as the mean prediction time.

$$L = \frac{\sum_{l=l_{min}}^{N} lP(l)}{\sum_{l=1}^{N} P(l)},$$

# RECURRENCE QUANTIFICATION ANALYSIS

Analogously to the definition of the determinism in Eq. (5), the fraction of recurrence points forming vertical structures in the RP is defined as

$$LAM = \frac{\sum_{\nu=\nu_{min}}^{N} \nu P(\nu)}{\sum_{\nu=1}^{N} \nu P(\nu)}$$

and is called laminarity.

#### RECURRENCE QUANTIFICATION ANALYSIS

The average length of vertical structures is given by

$$TT = \frac{\sum_{\nu=\nu_{min}}^{N} \nu P(\nu)}{\sum_{\nu=\nu_{min}}^{N} P(\nu)}$$

and is called trapping time.

Both LAM and TT have been proven to be useful for describing the dynamics of discrete systems and studying chaos-chaos transitions. RQA as the whole is a very powerful technique for quantifying differences in the dynamics of complex systems

### RECURRENCE QUANTIFICATION ANALYSIS

- One key question in empirical research concerns the confidence bounds of the calculated RQA measures
- Schinkel et al. have suggested a method to estimate the confidence of the RQA measures [ (Schinkel, Marwan, Dimigen, & Kurths, 2009)]
- We have used 95% confidence level for the computation of these measures.







Fig 1b RQA values of Black Monday (Oct 19, 1987) Crash



Fig 2a Recurrence Plot of the Friday the 13th mini-crash (Oct 13, 1989) Fig 2b RQA values of the Friday the 13th mini-crash (Oct 13, 1989)



Fig 3a Recurrence Plot of Japanese bubble (1986-91)

Fig 3b RQA values of Japanese bubble (1986-91)



Fig 4b RQA values of October 27, 1997 mini-crash

3/31/2014

Fig 4a Recurrence Plot of October 27, 1997 mini-crash





Fig 5b RQA values of Sept 11, 2001 NYSE crash

Fig 5a Recurrence Plot of Sept 11, 2001 NYSE crash



Fig6b ROA values of downturn of DIIA

#### Fig 6a 2002 Recurrence Plot of downturn of DJIA



Fig 7b RQA values of China 2007 Crash

#### Fig 7a Recurrence plot of China 2007 Crash







Fig 8b RQA values of 2010 Flash Crash

- The Recurrence Plot of any time series reveals the dynamic patterns of the time evolution of the data set
- The colour bands changed over the entire regime indicating a transition in dynamic state
- The colour code : a clue about the level of determinism in the system
- Whenever we see a dark band (Blue and Magenta) emanating we can understand the dynamic system is no longer exhibiting pure stochastic behaviour but a trend is emerging instead
- With respect to stock market data, we can take this as a bubble setting in.

- Whether the RP can display such dark bands before the rash dates
- A close inspection: that in all the cases except for the 9/11 crash and Flash crash ,known exogenous crashes, we see that a dark band is emerging
- Average length of such bands is lasting about 100 trading days about four months of active trading
- The bubble always gathered momentum three to four months before the crash occurred
- Corresponding RQA statistics also reinforces our findings

- The presence of dark band : formation of trend in the time signal
- Phenomenological interpretation of the same may be emergence of herd behaviour
- Shiller R. (2000)
  - speculative bubbles are motivated by "precipitating factors"
  - amplification mechanisms" that take the form of price-to-price feedback.

- A long recurrence : can happen because of the feedback effects
- One may also refer to(Bakshi & Madan, 1998)
  , (Bakshi & Madan, 1999), (Bakshi, Madan, & Panayotov, 2010)
- strong relation between higher moments and crashes
- indicating the trending effect

### Conclusion

- Reinforces the findings of Guhathakurta et al. (2010)
- Corresponding to the epoch of 100 days before the crash there was a marked change in the nonlinear dynamics of the system
- recurrence plot can be confidently used in identifying bubble
- Crash may be expected if it continues for three or more months

#### Conclusion

- RP alone can not predict cashes
- Raises doubt about the ability of the phase transition model as proposed by (Sornette D. A., 1996) to precisely predict the crashes
- But definitely, this tool may be used
  - to identify changes in market dynamics
  - can serve as a warning bell.
- Future works may evolve around modelling bubbles as regime changes

- Bakshi, G., & Madan, D. (1999). Crash discovery in stock and options markets. *Unpublished paper, University of Maryland*.
- Bakshi, G., & Madan, D. (1998). What is the Probability of a Stock Market Crash. University of Maryland (unpublished, September 2).
- Bakshi, G., Madan, D., & Panayotov, G. (2010). Deducing the implications of jump models for the structure of stock market crashes, rallies, jump arrival rates, and extremes. *Journal of Business & Economic Statistics , 28 (3), 380-396.*
- Barro, R. J. (1990). The stock market and investment. *Review of Financial Studies*, 3 (1), 115-131.
- Bastos, J. A., & Caiado, J. (2011). Recurrence quantification analysis of global stock ma
- Bates, D. S. (1991). The crash of 87: Was it expected? The evidence from options markets. *The journal of finance , 46 (3), 1009-1044*.rkets. *Physica A , 390 (7), 1315-1325*.

- Bates, D. S. (2012). US stock market crash risk, 1926–2010. Journal of Financial Economics, 105 (2), 229–259.
- Berlevi, G., & Veronesi, P. (2003). Rational panics and stock market crashes. *Journal of Economic Theory*, 110, 234–263.
- Choudhry, T. (1996). Stock market volatility and the crash of 1987: evidence from six emerging markets. *Journal of International Money and Finance*, 15 (6), 969-981.
- Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. *Journal of empirical finance*, 1 (1), 83-106.
- Fabretti, A., & Ausloos, M. (2005). Recurrence plot and recurrence quantification analysis techniques for detecting a critical regime: Examples from financial market indices. *International Journal of Modern Physics C*, 16(5), 671–706.
- Feigenbaum, J. A., & Freund, P. G. (1998). Discrete scale invariance and the Second Black Monday. *International Journal of Modern Physics B*, 12, 57.

- Feigenbaum, J. A., & Freund, P. G. (1998). Discrete scale invariance and the Second Black Monday. *International Journal of Modern Physics B*, 12, 57.
- Feigenbaum, J. A., & Freund, P. G. (1996). Discrete scale invariance in Stock Market before crashes. *International Journal of Modern Physics B*, 103737-3745.
- Fisher, I. (1930). *The Stock Market Crash--and After. New York: Macmillan company.*
- Gennotte, G. &. (1990). Market liquidity, hedging, and crashes. *The American Economic Review*, *999*-1021.
- Griffin, J. M., & Topaloglu, S. (2011). Who drove and burst the tech bubble? *The Journal of Finance*, *66* (4), 1251-1290.
- Guhathakurta, K., Bhattacharya, B., & Roychowdhury, A. (2009). A. (2009), Analysing Financial Crashes Using Recurrence Plot- A Comparative Study on Selected Financial Markets. In R. P. Pradhan(Ed.), *Forecasting Financial Markets (pp. 22-29). New Delhi: Allied Publishers.*

- Guhathakurta, K., Bhattacharya, B., & Roychowdhury, A. (2010a). An Examination of Critical Periods of Stock Price Movements Using Recurrence Plot". In B. Bhattacharya, & M. Roy(Ed.s), *Essays in Finance (pp. 98-11). New Delhi: Allied Publishers.*
- Guhathakurta, K., Bhattacharya, B., & Roychowdhury, A. (2010b). Using Recurrence Plot Analysis to distinguish between Endogenous and Exogenous Stock Market Crashes. *Physica A*, 389 ((9)), 1874-1882.
- Harris, L. (1989). The October 1987 S&P 500 Stock-Futures Basis. *The Journal Of Finance , 44 (1), 77-*99.
- Johansen, A., & Sornette, D. (1999). Financial Anti-Bubbles: Log Periodicity in Gold and Nikkei collapses. *International Journal of Modern Physics C*, 10563-575.
- Johansen, A., & Sornette, D. (2000). The Nasdaq crash of April 2000: yet another example of log periodicity in a speculative bubble ending in a crash. *European Physics Journal B*, 17319-328.

- Kaizoji, T. (2000). Speculative bubbles and crashes in stock markets: an interacting-agent model of speculative activity. *Physica A: Statistical Mechanics and its Applications, 287*(3), 493-506..
- Kirilenko, A., Samadi, M., Kyle, A. S., & Tuzun, T. (January 18, 2011). The Flash Crash: The Impact of High Frequency Trading on an Electronic Market. Working paper.
- Kyle, R. S. (1989). Informed Speculation with Imperfect Competition. *Review of Economic Studies*, *56* (3), 317-355.
- Lathrop, D. P., & Kostelich, E. J. (1989). Characterization of an experimental strange attractor by periodic orbits. *Physical Review A*, 40 ((7)), 4028–4031.
- Longin, F. M. (1996). The asymptotic distribution of extreme stock market returns. *Journal of business , 69 (3), 383-408.*
- Marwan, N., & Kurths, J. (2002). Nonlinear analysis of bivariate data with cross recurrence plots. *Physics Letters A*, 302 ((5-60)), 299-307
- Mitchell, M. L., & Netter, J. M. (1989). Triggering the 1987 stock market crash: Antitakeover provisions in the proposed house ways and means tax bill. *Journal of Financial Economic*, 24 (1), 37-68.
- Sato, K. (June 1995). Bubbles in Japan's Stock Market: A Macroeconomic Analysis. *Working Paper Series, Center on Japanese Economy and Business, Graduate School of Business, Columbia University, Working Paper No. 95...*

- Schinkel, S., Marwan, N., Dimigen, O., & Kurths, J. (2009). Confidence bounds of recurrencebased complexity measures. *Physics Letters A*, 373 (26), 2245–2250.
- Seyhun, H. N. (1990). Overreaction or Fundamentals: Some Lessons from Insiders' Response to the Market Crash of 1987. *The Jouranl of Finance , 45 (5), 1363-1388.*
- Shiller, R. (2000). Irrational Exuberance. Princeton: Princeton University Press.
- Shiller, R. J. (1987). Fashions, Fads and Bubbles in Financial Markets. In J. e. Coffee, *Knights, Raiders and Targets: The Impact of the Hostile Takeover. Oxford University Press.*
- Sornette, D. A. (1996). Crashes as Critical points. *International Journal of Theoretical and Applied Finance B*, 103737-3745.
- Sornette, D., & Johansen, A. (1999, November). Critical Crashes. *RISK*, 39.
- Sornette, D., Johansen, A., & Bouchaud, J. P. (1996). Stock Market Crashes, Prec
- Vandewalle, N., Ausloos, M., Boveroux, P., & Minguet, A. (1998). How the financial crash of October 1997 could have been predicted. *European Physics Journal B*, *4*, 139-141.
- Vandewalle, N., Boveroux, P., Minguet, A., & Ausloos, M. (1998). The crash of October 1987 seen as a phase transition. *Physica A*, 255, 201-210.
- Yang, J. K., & Min, I. (2003). Stock market integration and financial crises: the case of Asia. *Applied Financial Economics*, 13 (7), 477-486.Preursors and Replicas . International Journal of Physics I France, 167-175.