How the rich get richer

Anita Mehta

Thanks to A S Majumdar (SN Bose Centre, Calcutta) J M Luck (SPhT, Saclay)

Plan of talk

- Model ingredients n interacting traders via bank
- A tale of two traders
- Infinitely many traders in a soup! the mean-field limit
- Infinitely many traders the emergence of monopolists in local neighbourhoods

A model of *n* interacting traders - basic ingredients

- n traders interact via bank
- Wealth $m_i(t)$ for i = 1, ..., n of each trader evolves as: $\frac{\mathrm{d}m_i}{\mathrm{d}t} = \left(\frac{\alpha}{t} - \frac{1}{t^{1/2}}\sum_j g_{ij}\frac{\mathrm{d}m_j}{\mathrm{d}t}\right)m_i - \frac{1}{m_i}$
- Gain term = net gain from bank + net gain from trader transactions
- Loss term \triangleright the less you have, the more you lose!

A model of *n* interacting traders - basic ingredients

- n traders interact via bank
- Wealth $m_i(t)$ for i = 1, ..., n of each trader evolves as: $\frac{\mathrm{d}m_i}{\mathrm{d}t} = \left(\frac{\alpha}{t} - \frac{1}{t^{1/2}}\sum_j g_{ij}\frac{\mathrm{d}m_j}{\mathrm{d}t}\right)m_i - \frac{1}{m_i}$
- Gain term = net gain from bank + net gain from trader transactions
- Loss term b the less you have, the more you lose!
- Net gain from bank:

 \triangleright Interest on capital at $\alpha > 1/2$ which is taxed so that it is depleted as 1/t.

A model of *n* interacting traders - basic ingredients

- n traders interact via bank
- Wealth $m_i(t)$ for i = 1, ..., n of each trader evolves as: $\frac{\mathrm{d}m_i}{\mathrm{d}t} = \left(\frac{\alpha}{t} - \frac{1}{t^{1/2}}\sum_j g_{ij}\frac{\mathrm{d}m_j}{\mathrm{d}t}\right)m_i - \frac{1}{m_i}$
- Gain term = net gain from bank + net gain from trader transactions
- Loss term b the less you have, the more you lose!
- Net gain from bank:

 \triangleright Interest on capital at $\alpha > 1/2$ which is taxed so that it is depleted as 1/t.

• Net gain from trader transactions:

Gross amount g_{ij} x(total loss of other traders)

 \triangleright This is also taxed, so **net** amount depleted as $1/t^{1/2}$.

Some notations

- use $s = \ln \frac{t}{t_0}$ (to renormalise away the effect of initial time t_0)
- renormalised wealth $x_i = \frac{m_i}{t^{1/2}}$ and renormalised square wealth $y_i = x_i^2 = \frac{m_i^2}{t}$.

Some notations

- use $s = \ln \frac{t}{t_0}$ (to renormalise away the effect of initial time t_0)
- renormalised wealth $x_i = \frac{m_i}{t^{1/2}}$ and renormalised square wealth $y_i = x_i^2 = \frac{m_i^2}{t}$.

Result for 1 **trader in a bank**

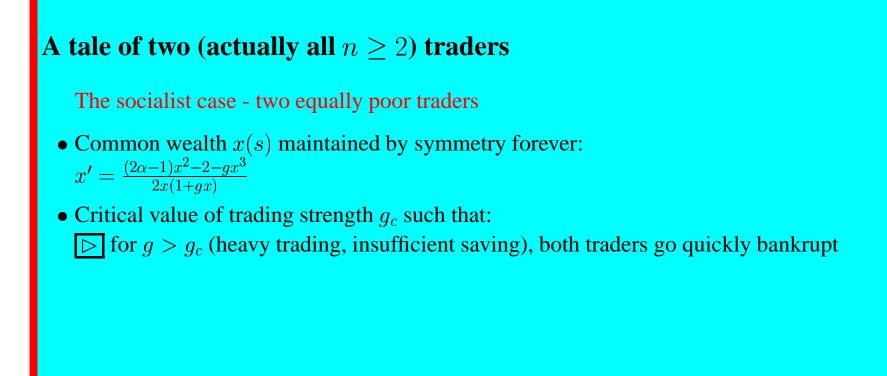
• A trader who is richer than threshold $[> (wealth y_0 > y_{\star}, y_{\star}(t_0) = \left(\frac{2t_0}{2\alpha - 1}\right))$ survives and gets forever richer..

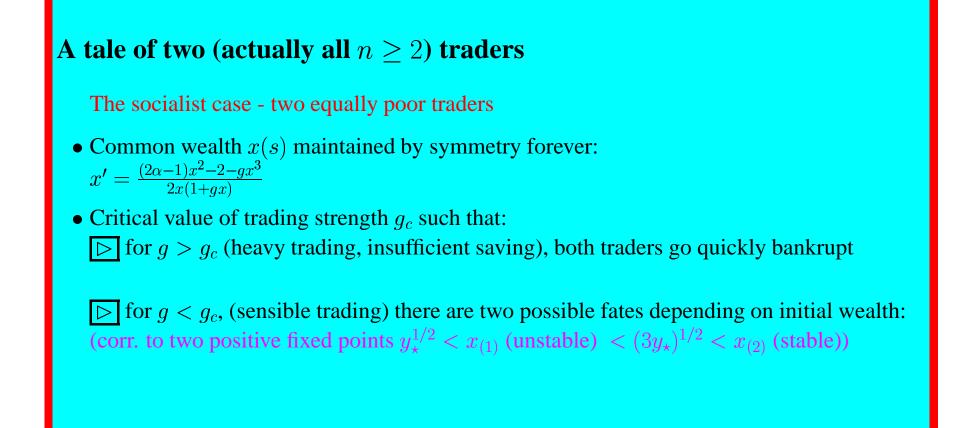
Some notations

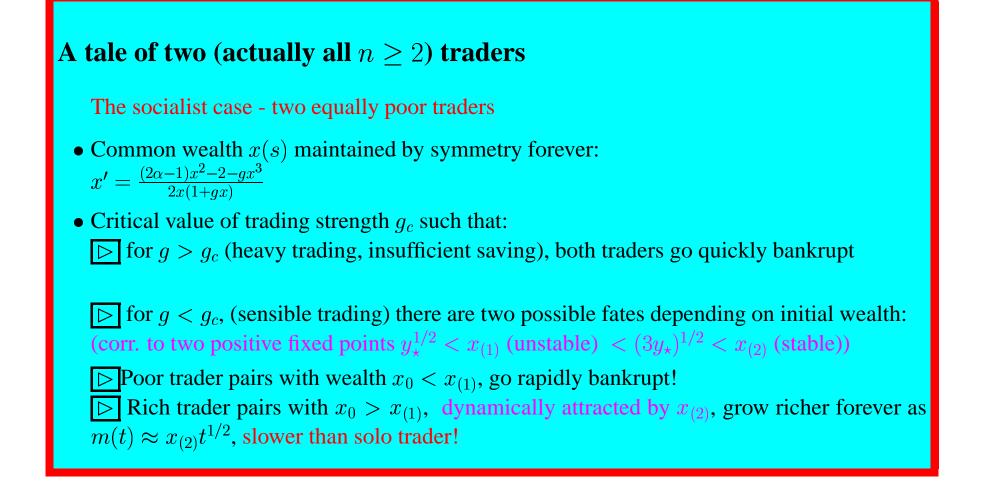
- use $s = \ln \frac{t}{t_0}$ (to renormalise away the effect of initial time t_0)
- renormalised wealth $x_i = \frac{m_i}{t^{1/2}}$ and renormalised square wealth $y_i = x_i^2 = \frac{m_i^2}{t}$.

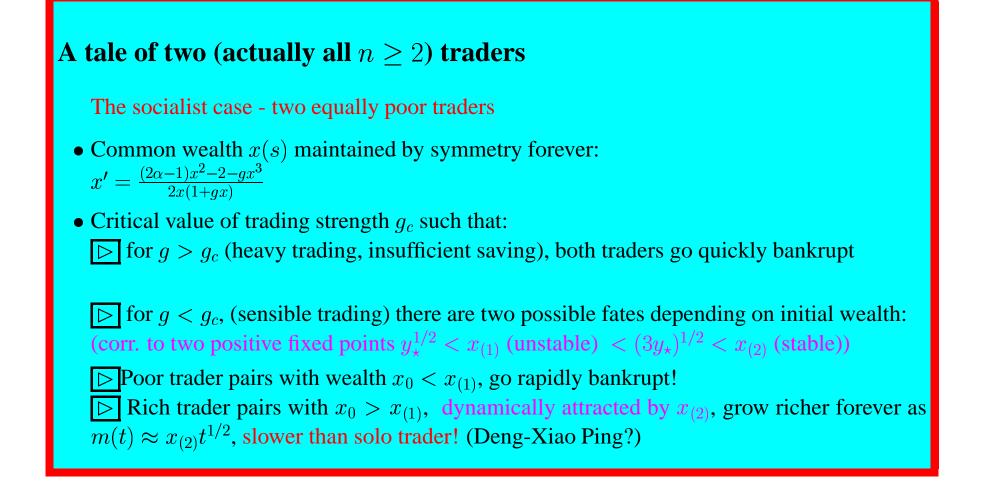
Result for 1 **trader in a bank**

- A trader who is richer than threshold $[> (wealth y_0 > y_{\star}, y_{\star}(t_0) = \left(\frac{2t_0}{2\alpha - 1}\right))$ survives and gets forever richer..
- A trader who is poorer than threshold goes bankrupt and dies...









• For two unequally wealthy traders, small differences diverge exponentially at small times...

- For two unequally wealthy traders, small differences diverge exponentially at small times...
- Asymptotically, ▷ the richer trader wins, while the poorer one goes bankrupt!
 ▷ survival of the richest !!

- For two unequally wealthy traders, small differences diverge exponentially at small times...
- Asymptotically, ▷ the richer trader wins, while the poorer one goes bankrupt!
 ▷ survival of the richest !!
- Last surviving trader may either go bankrupt

- For two unequally wealthy traders, small differences diverge exponentially at small times...
- Asymptotically,
 the richer trader wins, while the poorer one goes bankrupt!
 survival of the richest !!
- Last surviving trader may either go bankrupt or continue to get richer forever

- For two unequally wealthy traders, small differences diverge exponentially at small times...
- Asymptotically,
 the richer trader wins, while the poorer one goes bankrupt!
 survival of the richest !!
- Last surviving trader may either go bankrupt or continue to get richer forever depending on whether *initial* wealth < or > than threshold y_{\star} .

- For two unequally wealthy traders, small differences diverge exponentially at small times...
- Asymptotically,
 the richer trader wins, while the poorer one goes bankrupt!
 survival of the richest !!
- Last surviving trader may either go bankrupt or continue to get richer forever depending on whether *initial* wealth < or > than threshold y_{\star} .

Moral - Only those who are BORN rich stand a chance...

• Every trader connected to every other: $g = \frac{\overline{g}}{n}$

• Every trader connected to every other: $g = \frac{\overline{g}}{n}$ [>] all in the same soup...

- Every trader connected to every other: $g = \frac{\overline{g}}{n}$ [>] all in the same soup..
- When $n \to \infty$ limit taken at fixed \overline{g} , get $y'(s) = \gamma(s)y(s) 2$

- Every trader connected to every other: $g = \frac{\overline{g}}{n}$ [>] all in the same soup...
- When $n \to \infty$ limit taken at fixed \overline{g} , get $y'(s) = \gamma(s)y(s) 2$ MEAN-FIELD EQUATIONS
- When, additionally, \overline{g} is small, \triangleright trading is weak,

- Every trader connected to every other: $g = \frac{\overline{g}}{n}$ [>] all in the same soup...
- When $n \to \infty$ limit taken at fixed \overline{g} , get $y'(s) = \gamma(s)y(s) 2$ \triangleright MEAN-FIELD EQUATIONS
- When, additionally, \overline{g} is small, \triangleright trading is weak, we observe a *glassy* dynamics with two-step relaxation!

Glassy dynamics: a) two-step relaxation

• In Stage I, traders behave as isolated individuals

Glassy dynamics: a) two-step relaxation

• In Stage I, traders behave as isolated individuals \triangleright all Stage I survivors wealthier than threshold $y_*!!$

- In Stage I, traders behave as isolated individuals \triangleright all Stage I survivors wealthier than threshold $y_*!!$
- In Stage II, all traders interact

- In Stage I, traders behave as isolated individuals \triangleright all Stage I survivors wealthier than threshold $y_*!!$
- In Stage II, all traders interact \triangleright with a collective, slow dynamics

- In Stage I, traders behave as isolated individuals \triangleright all Stage I survivors wealthier than threshold $y_*!!$
- In Stage II, all traders interact \triangleright with a collective, slow dynamics
- The richest trader 'consumes' all others...

- In Stage I, traders behave as isolated individuals \triangleright all Stage I survivors wealthier than threshold $y_{\star}!!$
- In Stage II, all traders interact \triangleright with a collective, slow dynamics
- The richest trader 'consumes' all others... ... and may live to tell the tale...

- In Stage I, traders behave as isolated individuals \triangleright all Stage I survivors wealthier than threshold $y_*!!$
- In Stage II, all traders interact \triangleright with a collective, slow dynamics
- The richest trader 'consumes' all others... ... and may live to tell the tale... ... ONLY if he was born richer than y_{\star} !
- Two well-separated time scales of fast and slow dynamics *b* glassy dynamics!

• For exponential distribution of initial wealth, survival probability decays as $S(t) \approx \frac{2\alpha - 1}{\overline{g}} \left(C \ln \frac{t}{t_0}\right)^{-1/2}$

- For exponential distribution of initial wealth, survival probability decays as $S(t) \approx \frac{2\alpha 1}{\overline{g}} \left(C \ln \frac{t}{t_0} \right)^{-1/2}$
- Mean wealth of the surviving traders grows as $\langle \langle m \rangle \rangle_t \approx \left(C t \ln \frac{t}{t_0} \right)^{1/2}$

- For exponential distribution of initial wealth, survival probability decays as $S(t) \approx \frac{2\alpha 1}{\overline{g}} \left(C \ln \frac{t}{t_0} \right)^{-1/2}$
- Mean wealth of the surviving traders grows as $\langle\!\langle m \rangle\!\rangle_t \approx \left(C t \ln \frac{t}{t_0}\right)^{1/2}$
- $C = \pi$ irrespective of α , \overline{g} etc

- For exponential distribution of initial wealth, survival probability decays as $S(t) \approx \frac{2\alpha 1}{\overline{g}} \left(C \ln \frac{t}{t_0} \right)^{-1/2}$
- Mean wealth of the surviving traders grows as $\langle\!\langle m \rangle\!\rangle_t \approx \left(C t \ln \frac{t}{t_0}\right)^{1/2}$
- $C = \pi$ irrespective of α , \overline{g} etc \triangleright universality!!

- For exponential distribution of initial wealth, survival probability decays as $S(t) \approx \frac{2\alpha 1}{\overline{g}} \left(C \ln \frac{t}{t_0} \right)^{-1/2}$
- Mean wealth of the surviving traders grows as $\langle\!\langle m \rangle\!\rangle_t \approx \left(C t \ln \frac{t}{t_0}\right)^{1/2}$
- $C = \pi$ irrespective of α , \overline{g} etc \triangleright universality!!

In fact, universality much stronger: only the **tail exponent** of the distribution determines most features.

Infinitely many traders in local neighbourhoods - how monopolists emerge

A Bengali primer: local neighbourhood = 'para' monopolist = 'mastan'

- A Bengali primer: local neighbourhood = 'para' monopolist = 'mastan'
- Traders only interact with their z = 2D nearest neighbours on a *D*-dimensional lattice, with interaction $g \ll 1$.
- Two well-separated stages in dynamics (as before):

Fast individual dynamics in Stage I, where traders evolve in isolation (as before) Survival probability of trader S(s) decays quickly from S(0) = 1 to plateau $S_{(1)}$ (as before)

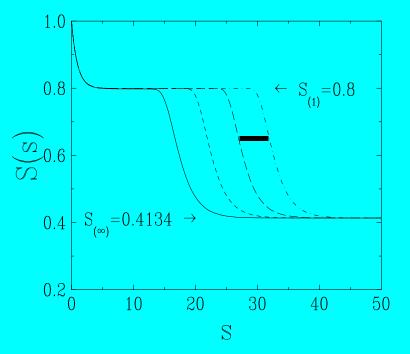
- A Bengali primer: local neighbourhood = 'para' monopolist = 'mastan'
- Traders only interact with their z = 2D nearest neighbours on a *D*-dimensional lattice, with interaction $g \ll 1$.
- Two well-separated stages in dynamics (as before):
 - Fast individual dynamics in Stage I, where traders evolve in isolation (as before)
 - Survival probability of trader S(s) decays quickly from S(0) = 1 to plateau $S_{(1)}$ (as before)
- however...

- A Bengali primer: local neighbourhood = 'para' monopolist = 'mastan'
- Traders only interact with their z = 2D nearest neighbours on a *D*-dimensional lattice, with interaction $g \ll 1$.
- Two well-separated stages in dynamics (as before):
 - Fast individual dynamics in Stage I, where traders evolve in isolation (as before) Survival probability of trader S(s) decays quickly from S(0) = 1 to plateau $S_{(1)}$ (as before)
- however...
- Effect of neighbourhoods comes into play in slow collective dynamics of Stage II:
 ▷ S(s) decays from S₍₁₎ to non-trivial limiting value S_(∞)!!
 ▷ a *finite* number of traders survive!

Moral: Every 'para' creates a 'mastan'!

Two-step relaxation and ageing

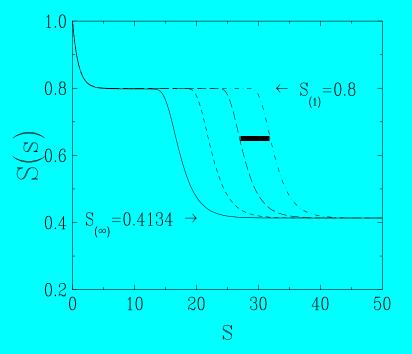
Survival probability versus time for 3 values of g



• Fast individual dynamics die out when $S_{(1)}$ reached - this decay is independent of g!

Two-step relaxation and ageing

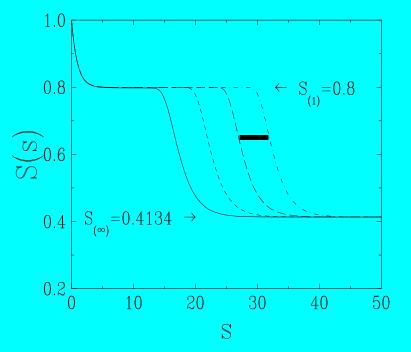
Survival probability versus time for 3 values of g



• Fast individual dynamics die out when $S_{(1)}$ reached - this decay is independent of g!

• Final number of surviving traders (monopolists) is $S_{(\infty)} \approx 0.4134$

Survival probability versus time for 3 values of g



- Fast individual dynamics die out when $S_{(1)}$ reached this decay is independent of g!
- Final number of surviving traders (monopolists) is $S_{(\infty)} \approx 0.4134$
- The weaker the trading strength, the longer it takes for monopolists to emerge ageing!

Survivors at $S_{(\infty)}$ = monopolists

- After Stage II, system in non-trivial *attractor* each trader has a *monopoly*, and keeps getting richer forever !
- Such attractors are *metastable states*, valleys in existing random energy landscape!
- Particular metastable state chosen is that which is most easily be reached...
- Number \mathcal{N} of such states grows exponentially with number of sites $N: \mathcal{N} \sim \exp(N\Sigma)$ $\sum \Sigma$ is the *complexity*!
- $S_{(\infty)}$ is density of a typical attractor fraction of initial traders which survive forever!

Definition: A *marketplace* is a set of $k \ge 1$ surviving traders such that all their neighbours have disappeared during Stage I. Its fate depends on its size k:

Definition: A *marketplace* is a set of $k \ge 1$ surviving traders such that all their neighbours have disappeared during Stage I. Its fate depends on its size k:

 $\star k = 1$: The trader survives forever, trading with the reserve and getting richer.

Definition: A *marketplace* is a set of $k \ge 1$ surviving traders such that all their neighbours have disappeared during Stage I. Its fate depends on its size k:

- $\star k = 1$: The trader survives forever, trading with the reserve and getting richer.
- * k = 2: For a pair of neighbouring traders (••), the poorer is bankrupted by the richer, who is a monopolist •• or ••.

Definition: A *marketplace* is a set of $k \ge 1$ surviving traders such that all their neighbours have disappeared during Stage I. Its fate depends on its size k:

- $\star k = 1$: The trader survives forever, trading with the reserve and getting richer.
- ★ k = 2: For a pair of neighbouring traders (••), the poorer is bankrupted by the richer, who is a monopolist •• or ••.
- * $k \ge 3$: Three or more traders (•••) have more than one possible fate: if the middle trader goes bankrupt first (•••), the two end ones are monopolists.

Definition: A *marketplace* is a set of $k \ge 1$ surviving traders such that all their neighbours have disappeared during Stage I. Its fate depends on its size k:

- $\star k = 1$: The trader survives forever, trading with the reserve and getting richer.
- ★ k = 2: For a pair of neighbouring traders (••), the poorer is bankrupted by the richer, who is a monopolist •• or ••.

★ k ≥ 3: Three or more traders (●●●) have more than one possible fate:
▷ if the middle trader goes bankrupt first (●○●), the two end ones are monopolists.
▷ If instead we have ●●○, only the richer will be live to be a monopolist (e.g.●○○).

Definition: A *marketplace* is a set of $k \ge 1$ surviving traders such that all their neighbours have disappeared during Stage I. Its fate depends on its size k:

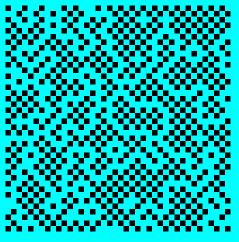
- $\star k = 1$: The trader survives forever, trading with the reserve and getting richer.
- * k = 2: For a pair of neighbouring traders (••), the poorer is bankrupted by the richer, who is a monopolist •• or ••.

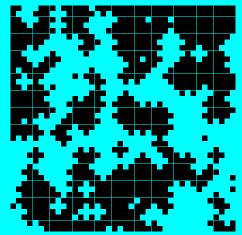
★ k ≥ 3: Three or more traders (●●●) have more than one possible fate:
▷ if the middle trader goes bankrupt first (●○●), the two end ones are monopolists.
▷ If instead we have ●●○, only the richer will be live to be a monopolist (e.g.●○○).

Moral: Every mastan needs his own space..

Pattern formation

- If $S_{(\infty)} = 1/2$ on a square lattice, only two possible ground states: each is perfect checkerboard!
- can define survival index (according to occupation) or checkerboard index (according to parity)

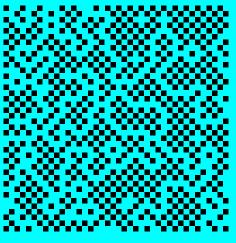


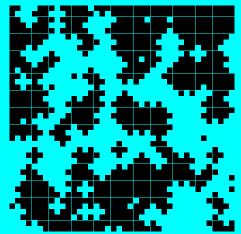


• Pattern above (for $S_{(\infty)} = 0.371$) has local checkerboard structure with frozen-in defects between patterns of different parities

Pattern formation

- If $S_{(\infty)} = 1/2$ on a square lattice, only two possible ground states: each is perfect checkerboard!
- can define survival index (according to occupation) or checkerboard index (according to parity)

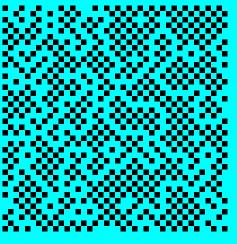


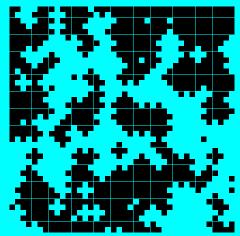


- Pattern above (for $S_{(\infty)} = 0.371$) has local checkerboard structure with frozen-in defects between patterns of different parities
- Random structure entirely inherited from initial wealth distribution

Pattern formation

- If $S_{(\infty)} = 1/2$ on a square lattice, only two possible ground states: each is perfect checkerboard!
- can define survival index (according to occupation) or checkerboard index (according to parity)





- Pattern above (for $S_{(\infty)} = 0.371$) has local checkerboard structure with frozen-in defects between patterns of different parities
- Random structure entirely inherited from initial wealth distribution
- Nearest neighbours of monopolists are paupers but next-nearest ones likely to be monopolists!
 - ▷ confirmed by correlation functions

Moral: Those who are born rich survive to get richer, while the poor eventually disappear

'Some are born to sweet delight Some are born to endless night'

William Blake