SOME PHYSICAL ASPECTS OF PHOTOINDUCED ELECTRON TRANSFER REACTIONS

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE) OF JADAVPUR UNIVERSITY

BY SHARMISTHA DUTTA CHOUDHURY

CHEMICAL SCIENCES DIVISION
SAHA INSTITUTE OF NUCLEAR PHYSICS
1/AF BIDHANNAGAR
KOLKATA 700 064

JANUARY 2006
## CONTENTS

**CHAPTER I: Introduction to Photoinduced Electron Transfer** 1-68

1.1 The beginning: a historical perspective of electron transfer reactions 2

**1.2 Theory of electron transfer reactions** 4

1.2.1 The classical Marcus theory 4

1.2.2 Quantum mechanical aspects 10

1.2.3 Ultrafast electron transfer: contribution of solvation and vibrational dynamics 12

1.2.4 Beyond the Marcus theory………. (Intersecting State Model) 13

1.2.5 Distance dependence of electron transfer 15

1.2.6 The elusive Marcus inverted region 16

1.3 PET: Rehm Weller approach 18

1.4 Intermediates in PET 21

1.5 Intramolecular PET 25

1.6 PET in organized systems 26

1.7 PET in biology 28

1.8 Magnetic field (MF) effects on PET 32

1.8.1 S and T RIPs 33

1.8.2 S-T intersystem crossing (ISC) and mechanism of MF effect 35

1.8.3 The parameter B1/2 39

1.8.4 MF effect on PET with S precursors 42

1.8.5 MF effect on PET with T precursors 48

1.8.6 MF effect on PET in Biology 54

References 56

**CHAPTER II: Scope of the Thesis** 69-72
CHAPTER III: Experimental Techniques

73-84

3.1 Absorption spectra 73
3.2 Fluorescence spectra 73
3.3 Fluorescence Lifetime Measurement 73
3.4 Measurement of MF effect on exciplex luminescence 76
3.5 Laser flash photolysis 78
3.6 MF effect on triplet non-fluorescent species 79
3.7 Materials 80
3.8 Preparation of micelles and reverse micelles 82
3.9 Preparation of small unilamellar vesicles (SUVs) 82

References 84

CHAPTER IV: A New Exciplex System Between Phenazine and Some Aromatic Amines: Dependence of Nature of Complexation on Structure of the Amine 85-101

4.1 Introduction 85
4.2 Results and Discussion 87
4.3 Conclusion 99

References 100
CHAPTER V: Relation Between Structure of Participating Molecules and PET Dynamics Revealed by MF Studies

102-118

5.1 Introduction 102
5.2 Results and Discussion 105
5.3 Conclusion 116
References 117

CHAPTER VI: Role of Solvent Geometry in PET Reactions

119-127

6.1 Introduction 119
6.2 Results and Discussion 121
6.3 Conclusion 126
References 127

CHAPTER VII: Exploring the MF Effect on PET for the PZ-Amine Systems in Organized Assemblies

128-152

7.1 Introduction 128
7.2 Results and Discussion 131
7.2.1 MF effect in SDS micelles 131
7.2.2 MF effect in reverse micelles 140
7.2.3 MF effect in SUVs 145
7.2.4 MF effect in micelles, reverse micelles and SUVs: a comparison 148
CHAPTER VIII: PET in Some Model Biomolecules 153-178

8.1 Introduction 153
8.2 Interaction of PZ with water and DNA bases 153
  8.2.1 Results and Discussion 154
8.3 Interaction of 4NQO with indole derivatives and some related biomolecules 163
  8.3.1 Results and Discussion 164
8.4 Conclusion 174
References 176

CONCLUDING REMARKS 179-180

LIST OF ABBREVIATIONS 181-183

LIST OF PUBLICATIONS 184-185