Role of Huntingtin (Htt) interacting proteins in apoptosis induction in cultured cells expressing exon1 of mutated Huntingtin gene

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE) OF JADAVPUR UNIVERSITY, KOLKATA, INDIA

Manisha Banerjee (nee Bhattacharya)
CRYSTALLOGRAPHY & MOLECULAR BIOLOGY DIVISION
SAHA INSTITUTE OF NUCLEAR PHYSICS
KOLKATA, INDIA
2009
Content

Abbreviations 1

Synopsis 4

Chapter 1: General Introduction 15

1.01 Huntington’s disease 15

1.02 Genetic Basis of the Disease: mutation to the gene Huntingtin (HTT) 15

1.03 Domain organization of Huntingtin protein: insight to its function 16

1.04 Molecular pathogenesis of Huntington’s Disease 17

1.04.01 Aggregates of mutant HTT proteins 19

1.04.02 Apoptosis 20

1.04.03 Mitochondrial dysfunction 21

1.04.04 Autophagy and Ubiquitin proteosomal degradation system in HD 21

1.04.05 Transcriptional deregulation in HD 22

1.04.06 Possible mechanisms of transcription deregulation 26

1.05 Huntingtin (HTT) Interacting Proteins 30

1.06 Role of HTT-interacting proteins in alteration of mutant HTT induced aggregates and toxicity 33

1.07 Sequestered poly Q Hypothesis 36

1.08 Huntingtin interacting protein 1 (HIP-1) and its molecular partner HIPPI 37

1.08.01 Structural feature of Huntingtin interacting protein 1 (HIP-1): Clue to its function 37

1.08.02 HIP-1 interacting proteins: participation in apoptosis and survival 38

1.08.03 HIP-1: role in protein trafficking and transcription 41

1.08.04 Structural organization of HIPPI, its interacting partners, and involvement in apoptosis 41

1.08.05 Role of HIPPI in transcription regulation 43

1.09 Myeloid Leukemia Factors (MLFs): its interacting partners and possible functions 44
Chapter 2: Materials and Methods

2.01 Chemicals

2.02 Mammalian cells, Bacterial strains and Plasmids
 2.02.01 Mammalian Cells
 2.02.02 Bacterial Strains
 2.02.03 Plasmids
 2.02.04 Human Brain plasmid cDNA library

2.03 Methods
 2.03.01 Mammalian cell culture
 2.03.02 Sterilization
 2.03.03 Transfection of mammalian cells
 2.03.04 RNA Isolation and first strand coding DNA (cDNA) preparation
 2.03.05 Gene cloning
 2.03.06 Site directed mutagenesis
 2.03.07 PCR product cloning in pTZ57R/T vector
 2.03.08 Different microscopic methods
 2.03.09 Detection of Apoptosis
 2.03.10 Gene expression study by Real Time PCR
 2.03.11 Western blot analysis
 2.03.12 Immunoprecipitation assay
 2.03.13 In vivo chaperone activity assay
 2.03.14 Protein expression, extraction and purification
 2.03.15 Circular Dichroism (CD) spectral analysis
 2.03.16 Crystallographic technique
 2.03.17 Modeling
 2.03.18 Procedures for Electrophoresis
 2.03.19 Filter retardation assay
 2.03.20 Bioinformatics approaches to analyze HTT interacting proteins
Chapter 3: Huntingtin interacting proteins: involvement in diverse molecular functions, biological processes and pathways

3.01 Expressions of HTT-interacting proteins in brain 77
3.02 Influence of poly Q length at HTT for the interactions with other proteins 78
3.03 HTT-interacting proteins: their molecular functions 81
3.04 HTT-interacting proteins: their involvement in biological processes 83
3.05 HTT-interacting proteins involve in diverse biological pathways 85
3.06 Involvement of HTT-interacting proteins in other diseases 89

Chapter 4: Modulation of mutated N-terminal HTT mediated aggregates and apoptosis by HTT interacting proteins

PART 4A: Supression of mutant N-terminal HTT aggregates, cellular toxicity and apoptosis by human myloid leukemia factors MLF1 and MLF2

4A.01 Preferential interaction of Human myloid leukemia factors hMLF1 and hMLF2 with mutated N-terminal HTT protein coded by exon1 of HTT gene.
 4A.01.01 Expression and localization of MLF1 and MLF2 with the N-terminal HTT coded by HTT exon1. 107
 4A.01.02 Interaction of MLF1 and MLF2 with N-terminal HTT coded by HTT exon-1 by immunoprecipitation. 108
4A.02 Modulation of aggregates formed by N-terminal HTT with 83Q by co-expression of GFP-MLF1 and GFP-MLF2
 4A.02.01 Decreased number of cells containing mutated HTT aggregates in the presence of GFP-MLF1 or GFP-MLF2 110
 4A.02.02 Live cell microscopy reveals co-expression of GFP-MLF1 reduces poly Q mediated aggregation kinetics 110
 4A.02.03 Reduction of SDS insoluble aggregates in presence of MLF1 and MLF2 111
 4A.02.04 Fluorescence recovery after photo bleaching (FRAP) of HTT aggregates in the presence of either
 GFP-MLF1 or GFP-MLF2 112
4A.03 Reduction of DsRed-83Q induced apoptosis by co-expression of GFP-MLF1 and GFP-MLF2

4A.04 Partial reduction of mutated HTT mediated aggregation and apoptosis in presence N-terminal MLF1
 4A.04.01 Generation of deletion mutants of MLF1
 4A.04.02 Expression of deletion mutants of MLF1 separately and together with HTT exon 1 in Neuro-2A cell
 4A.04.03 Interaction of N-terminal MLF1 with N-terminal HTT coded by the exon1 of HTT gene
 4A.04.04 Reduction of mutated N-terminal HTT aggregates by domain “A” (5-100aa) of MLF1
 4A.04.05 Reduction of toxicity and apoptosis in DsRed-83Q expressing cells by domain “A” (5-100aa) of MLF1
 4A.04.06 Fluorescence recovery after photo bleaching (FRAP) of Htt aggregates in the presence and absence of GFP-“A” and GFP-“B”.

4A.05 Association of transcription regulators CREB, CBP and p53 with mutated HTT aggregates and release of these transcription regulators in the presence of GFP-MLF1
 4A.05.01 Release of CREB, CBP and p53 from HTT aggregates by MLF1
 4A.05.02 Reversal of expression of GADD45A in the presence of GFP-MLF1
 4A.05.03 In vivo chaperone activity of MLF1

PART 4B: Role of DNAJ (Hsp40) homolog, subfamily B, member 3 (DNAJB3, also known as HCG3) in the reduction of mutated N-terminal HTT coded by HTT gene mediated aggregation and apoptosis

4B.01 Theoretical analysis of DNAJB3 sequence
 4B.01.01 Comparison with its homologous chaperone
 4B.01.02 Structural organization of different domains of DNAJB3

4B.02 Co-localization of HCG3 with wild type as well as mutant N-terminal HTT protein with 83Q coded by exon1 of HTT gene
4B.02.01 Colocalization of HCG3 with N-terminal HTT coded by exon-1 having 83Q or 16Q.

4B.02.02 Physical interaction of HCG3 with HTT exon1 containing 16Q and 83Q

4B.03 Expression of GFP-HCG3 reduces the mutant N-terminal HTT induced aggregates

4B.03.01 Suppression of aggregates formed by N-terminal HTT with 83Q by co-expression of GFP-HCG3

4B.03.02 Reduction of SDS insoluble aggregates formed by DsRed-83Q in presence of GFP-HCG3

4B.04 Reduction of mutated HTT exon 1 induced apoptosis by GFP-HCG3

4B.05 HCG3 is an active component of chaperone machinery

4B.05.01 Co localization of HCG3 with Hsp70

4B.05.02 In vivo chaperone activity of HCG3

PART 4C: Role of Huntingtin Interacting Protein 1(HIP-1) in the modulation of aggregates and apoptosis in cells expressing mutated N-terminal HTT coded by the HTT exon1

4C.01 Reduction of mutated N-terminal HTT coded by the exon1 of HTT gene mediated aggregates formation and apoptosis induction by HIP-1

4C.01.01 Expression of HIP-1 and its N terminal domain separately and along with HTT exon1

4C.01.02 Suppression of expanded N-terminal HTT mediated aggregation formation by HIP-1

4C.01.03 Reduction of mutated N-terminal HTT mediated apoptosis by HIP-1

Chapter 5: Transcription regulation by HIP-1 and HIPPI

5.01 Structural analysis of pseudo Death Effector Domain (pDED) of HIPPI

5.01.01 Construction of recombinant pDED-HIPPI

5.01.02 Determination of molecular weight of pDED-HIPPI by mass spectrometry

5.01.03 CD spectroscopy of 6NH tagged pDED-HIPPI
5.01.04 Crystallization of pDED-HIPPI
5.01.05 X-ray Data collection and processing
5.01.06 Preliminary crystallographic analysis of pDED-HIPPI
5.01.07 Modeling of pDED of HIPPI: possible residues involved in the interaction with DNA
5.01.08 PreDs rule prediction for DNA binding domain of pDED-HIPPI

5.02 Involvement of 393 arginine of HIPPI in the transcriptional regulation of Caspase1 and apoptosis
5.02.01 Exogenous expression of wild type (R393) and mutant (E393) pDED of HIPPI in HeLa cell
5.02.02 Physical interaction of HIP-1 with the wild type and mutant pDED and recruitment of pro-caspase-8
5.02.03 Reduction of caspase-1 gene expression in cells expressing mutated pDED
5.02.04 Apoptosis induction by mutant pDED
5.02.05 Mutant pDED-HIPPI (R393E) can not interact with caspase-1 promoter

5.03 Role of HIP-1 in the transcriptional regulation of caspase-1 gene by translocating HIPPI into nucleus
5.03.01 Expression of caspase-1 in HIP-1 reduced HIPPI expressing cell
5.03.02 Reduction of Apoptosis induction in HIP-1 reduced HIPPI expressing cell
5.03.03 Translocation of HIPPI into the nucleus requires expression of HIP-1 in HeLa
5.03.04 Translocation of the pDED and its mutant to the nucleus by HIP-1
5.03.05 Endogenous HIPPI interacts with caspase-1 promoter
5.03.06 Endogenous HIPPI increases the expression level of caspase-1
5.03.07 Translocation of endogenous HIPPI into nucleus requires HIP-1 in N2a
5.03.08 Exogenous over expression of HIP-1 increases caspase-1 gene expression in N2a cell