Atomic Force Microscopy beyond topography and electrochemical analysis: Graphene, Zinc Oxide and Bacteria

By

Anuradha Bhattacharya

PHYS05200804005

Saha Institute Of Nuclear Physics, Kolkata

A thesis submitted to the
Board of Studies in Physical Sciences
In partial fulfillment of requirements for the Degree of

DOCTOR OF PHILOSOPHY of

HOMI BHABHA NATIONAL INSTITUTE

January, 2015
CONTENTS

Synopsis 9

1. Chapter 1: Introduction 13

1.1 Structural conformations of graphene: Mother of all carbon forms 15

1.1.2 Electronic properties of graphene 18

1.2 Synthesis of graphene 20

1.2.1 Exfoliation using scotch tape 20

1.2.2 Unzipping of CNTs 22

1.2.3 Chemical Exfoliation 22

1.2.4 Supercritical CO$_2$ method 23

1.2.5 Annealing graphite in oxygen rich atmosphere 23

1.2.6 Solvothermal Route 23

1.2.7 Chemical Route 24

1.2.8 Chemical Vapour Deposition 25

1.2.9 Sublimation (SiC) 25

1.3 Wetting property of graphene in relation to its electronic property 26

1.4 Wrinkles in graphene sheet 27

1.5 Magnetic and bio-sensing properties of graphene 28

1.6 Biosensors 29

1.7 Conclusion 31
2. Chapter 2: Experimental Methods

2.1 Introduction

2.1.1 Sample preparation

2.2 Experimental techniques

2.2.1 Contact mode of operation

2.2.2 Tapping Mode

2.2.3 Frictional Force Microscopy

2.2.4 Ultrasonic Force Microscopy (UFM) / Atomic Force Acoustic Microscopy (AFAM)

2.2.5 Conducting tip AFM

2.3.1 Electrochemistry

2.3.2 Potentiostat

2.3.3 Galvanostat

2.3.4 Reference Electrode

2.3.4.1 Ag/AgCl reference electrode

2.3.4.2 Calomel reference electrode

2.3.5 Counter Electrode

2.3.5.1 Platinum counter Electrode

2.3.6 Working Electrode

2.3.7 Faraday’s Law

2.3.9 Electrochemical Workstation

2.3.9.1 Cyclic Voltammogram
2.3.9.2 Amperometric Response 58
2.3.9.3 Electrochemical Impedance Spectoscopy 58
2.4 Basic principle of RAMAN spectroscopy 59
2.5 Basic principle of SQUID magnetometer 59

3. Chapter 3: Development of Biosensors

3.1 Introduction 63
3.2 Functions of nanomaterials in biosensors 63
3.3 Trends in glucose biosensing: Brief Introduction 63
3.4 Experimental Details 67
3.5 Results and discussions 68
3.6 Graphene as Hydrogen Peroxide Sensor 71
3.6.1 Experiment 73
3.7 Conclusion 77

4. Chapter 4: Physical Properties of wrinkled graphene surfaces

4.1 Introduction: Graphene – Nucleobase Interactions 80
4.2 Results and Discussions 82
4.3 Conclusion 85

5. Chapter 5: Wetting Property of the Edges of Monoatomic Step on Graphite:

Frictional-Force Microscopy

5.1 Introduction: Study of wetting property of graphene using FFM 88
5.2 Experimental Details 89
5.3 Conclusions

6. Chapter 6: Identifying bacterial fragments using Ultrasonic-AFM

6.1 Introduction: Ultrasonic AFM imaging of bacterial cells

6.2 Experimental Section

6.3 Results and discussions

6.4 Conclusion

7. Chapter 7: Conclusions

7.1 Conclusion and future scope