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Abstract

Stochastic fixed-energy sandpiles (FES) like conserved Manna model, CTTP

and similar models like CLG etc. were believed to be representative of an in-

dependent universality class, namely Manna class. Observations like anoma-

lous decay behavior (undershooting; α 6= δ though β ≈ β ′), scaling violation

(α 6= β/ν‖), same upper critical dimension and same mean field exponents

as that DP class, etc., raise a doubt on existing claims. Using natural initial

condition instead of random initial condition, we have clearly shown [38] that

generic FES in 1D belong to DP class.

Then, using the simple example of CLG in 1D, we have shown [41] how the

initial condition (i.c.) may crucially affect the critical behavior of a system.

In this model the decay exponent is αin = 1/4 for random i.c. whereas αin =

1/2 for natural i.c. and the later is in agreement with that obtained from the

temporal decay of stationary state autocorrelation. The decay exponent α

obtained from natural i.c. and stationary state autocorrelation are consistent

with the scaling relations whereas α obtained from random i.c. shows scaling

violation. Thus, natural i.c. and stationary state autocorrelation capture the

universal features whereas random i.c. do not. We have shown that this kind

of feature has nothing to do with the non-ergodicity and the origin of such

feature is the existence of two competing time scales-(i) τin ∼ l2is which is

a measure of duration of persistence of the initial memory effect and (ii)

τ ∼ L2 which arise from the finite size effect. Different features may arise

depending on how the two time scales compete.

Next, we study continuous models of absorbing phase transition (APT)

and show that FES models are closely related to mass chipping models

(MCM). These models undergo DP-like transitions in presence of threshold

w which allows only those sites having Ei ≥ w, to transfer mass or energy to

the neighboring sites. In presence of a threshold, these models show disconti-

nuity in the probability density for energy (or mass). We propose a method of

obtaining the critical point and other critical behavior analytically. We have

introduced a novel perturbation approach [57] and obtained the stationary

state mass distributions for a set of general mass chipping models.
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