Biophysical and biological characterization of Huntingtin interacting protein HYPK

Thesis Submitted for the Degree of Doctor of Philosophy (Science) of University of Calcutta, India (2008)

By

Swasti Raychaudhuri

Contents

Abbreviatio	on	1
Synopsis		2
Chapter	1: General Introduction	
1.01	Huntington's disease	12
1.02	Neuropathology in HD	12
1.03	The Huntingtin (Htt) protein	13
1.04	Nuclear Aggregates of Htt: Hallmark of HD	15
1.05	Cell death in HD	1'
	1.05.01 Apoptosis in HD	17
	1.05.02 Htt aggregates and apoptosis	18
	1.05.03 Other processes impaired in HD	20
1.06	Interactors of huntingtin and implication in pathogenesis	
	of HD	22
1.07	Transcription deregulation in HD	25
1.08	Chaperones: Protein misfolding/refolding, proteosomal	
	degradation and autophagy in HD	27
1.09	Intrinsically unstructured proteins in neurodegenerative	
	Diseases	33
1.10	Objective of the thesis: Characterization of HYPK, a novel	
	huntingtin interactor	36
Refer	References	
Chapter	2: General Materials and Methods	
2.01	Cloning, expression and Purification of HYPK	52
2.02	Cloning of N-terminal and C-terminal region of HYPK	53
2.03	Cloning of normal and expanded huntingtin exon1 in	
	DsRedC1 vector	53
2.04	Cloning of Eukaryotic Translation Elongation Factor 1 α	53
2.05	Cloning of HSP70	54
2.06	Cell culture and transfection	54
2.07	Mass Spectrometry	54

Chapter 3: Biophysical Characterization of HYPK

3.01.	Prologue	56
3.02	Protocols for Biophysical Characterization of HYPK	56
	3.02.1 Size-exclusion Chromatography	56
	3.02.2 Dynamic Light Scattering (DLS)	56
	3.02.3 CD Spectroscopy	57
	3.02.4 Fluorescence Spectroscopy	57
	3.02.5 Fluorescence Spectroscopy of HYPK at Different pH	H 57
	3.02.6 Fluorescence Spectroscopy of HYPK in Presence of	
	Guanidine Hydrochloride and Sodium Perchlorate	58
	3.02.7 Acrylamide Quenching Study of HYPK Fluorescence	e 58
	3.02.8 Limited Proteolysis	58
	3.02.9 in vitro Cross-linking of HYPK	59
	3.02.10 Native Gel Electrophoresis	59
	3.02.11 Estimation of Mean Net Charge (R) and	
	Mean Hydrophobicity (H)	59
	3.02.12 Analysis of Amino Acid Sequence of HYPK	60
	3.02.13 Effect of Ca ⁺⁺ Concentration on HYPK	
	Conformation	60
3.03	Results	61
	3.03.1 Expression and purification of recombinant HYPK	61
	3.03.2 Unusual Movement of HYPK on SDS	
	Polyacrylamide Gel	61
	3.03.3 Size Exclusion Chromatography	62
	3.03.4 Conformational Studies of HYPK with Various	
	Spectroscopic Techniques	65
	3.03.4.1 Dynamic Light Scattering (DLS)	65
	3.03.4.2 Circular Dichroism (CD)	66
	3.03.4.3 Fluorescence Spectroscopy	67
	3.03.5 Limited Proteolysis	71
	3.03.6 Theoretical Analysis of HYPK Sequence	73

	3.03.7 Effect of Ca ⁺⁺ on HYPK Conformation	74
3.04	Discussions	79
3.05	Conclusion	87
Refere	ences	88
Chapter 4	: Biological Characterization of HYPK	
4.01	Prologue	92
4.02	Protocols for Biological Characterization of HYPK	92
	4.02.1 Microscopy, Live cell microscopy and	
	Photo-bleaching	92
	4.02.2 Co-immunoprecipitation	94
	4.02.3 Filter Retardation Assay	95
	4.02.4 Detection of Nuclear Fragmentation	95
	4.02.5 MTT Assay	96
	4.02.6 Fluorometric Determination of Caspase-2,	
	Caspase-3, and Caspase-8 Activity	96
	4.02.7 in vitro Chaperone Activity Assays	97
	4.02.8 in vivo Chaperone Activity Assay	97
	4.02.9 Nascent Peptide Binding Assay	98
	4.02.10 Interactors of HYPK other than Htt:	
	Pull Down Assay and Mass Spectrometry	99
4.03	Results	99
	4.03.1 Interactions of HYPK with N-terminal Htt coded	
	by exon1 of htt gene	99
	4.03.2 Suppression of aggregates formed by N-terminal	
	Htt with 40Q by co-expression of GFP-HYPK	101
	4.03.3 Live cell microscopy reveals that co-expression of	
	GFP-HYPK reduces the kinetics of mutated	
	N-terminal Htt mediated aggregate formation	106
	4.03.4 Fluorescence recovery after photobleaching	
	(FRAP) and fluorescence loss in photobleaching	
	(FLIP) of Htt aggregates in the presence and	

	absence of GFP-HYPK	109
	4.03.5 Reduction in SDS Insoluble Aggregates in	
	presence of HYPK	113
	4.03.6 Reduction of DsRed-H40 induced apoptosis by	
	co-expression of GFP-HYPK	114
	4.03.7 HYPK has chaperone like activity	117
	4.03.8 HYPK contains a putative nascent peptide	
	binding motif	120
	4.03.9 N-terminus and C-terminus of HYPK co-localizes	i,
	with Htt aggregates when over-expressed	121
	4.03.10 Experimental validation of interaction of HYPK	
	and nascent peptides	123
	4.03.11 in vivo chaperone-like activity of C-terminus	
	of HYPK	125
	4.03.12 HYPK interacts with Eukaryotic Translation	
	Elongation Factor 1 α	127
4.04	Discussions	127
4.05	Conclusion	133
Refer	ences	134
Chapter 5	: Intrinsically Unstructured Proteins in Neurodegenerati	ve diseases
5.01	Prologue	137
5.02	Protocols	137
	5.02.1 Construction of datasets	137
	5.02.2 Disorder Prediction	138
	5.02.3 Unstructuredness and protein interaction	140
	5.02.4 Functional annotation	141
	5.02.5 Statistical analysis	141
5.03	Results	142
	5.03.1 Unstructured Proteins are Prevalent in	
	Neurodegenerative Diseases	142
	5.03.2 Unstructuredness is Prevalent in Hub Proteins in	

the HD, PD and AD datasets	144
5.03.3 Functions of the Unstructured Proteins in	
Neurodegenerative Diseases (HD, PD and AD)	146
5.04 Discussions	148
References	150
Chapter 6: Summary and Conclusions	153
Appendix	i-1ix