CRYSTAL STRUCTURE ANALYSIS OF A TRYPSIN/CHYMOTRYPSIN INHIBITOR PROTEIN FROM *Psophocarpus tetragonolobus*

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE) OF JADAVPUR UNIVERSITY

BY

SATYABRATA DAS

CRYSTALLOGRAPHY AND MOLECULAR BIOLOGY DIVISION SAHA INSTITUTE OF NUCLEAR PHYSICS 1/AF, BIDHANNAGAR, KOLKATA-700 064 INDIA

JUNE 2002
CONTENTS

Preface

Abbreviations

Part I

1 Introduction

1.1 Proteolytic enzymes and their inhibitors

1.2 Serine proteinases and their mechanism of catalysis

1.3 Protein inhibitors of serine proteinases and their classification

1.4 Functions and uses of plant proteinase inhibitors

1.5 Recognition of serine proteinases of chymotrypsin like family and their canonical protein inhibitors
 1.5.1 Structural features of proteinase-inhibitor recognition sites
 1.5.2 Kinetic and thermodynamic aspects

1.6 STI-Kunitz: A family of plant proteinase inhibitors
 1.6.1 β-trefoil fold: A general structural feature of STI-Kunitz family
 1.6.2 Crystal structures of inhibitors belonging to STI-Kunitz family
 1.6.2.1 *Erythrina caffra* trypsin inhibitor (ETI)
 1.6.2.2 Soybean trypsin inhibitor (STI)
 1.6.2.3 Complex of soybean trypsin inhibitor and porcine pancreatic trypsin (STI:PPT)
 1.6.2.4 Winged bean chymotrypsin inhibitor (WCI)
 1.6.2.5 Amylase/subtilisin inhibitor from barley (BASI) and wheat (WASI or PKI₃)

1.6.3 Crystal structure of WBA: A non-inhibitor member of STI-Kunitz family

1.6.4 Reactive site loop: A primary recognition site

1.7 The Winged bean (*Psophocarpus tetragonolobus*)
 1.7.1 Proteinase inhibitors isolated from the seeds of winged bean

1.8 Objective and scope of the present work
2 Crystallization, data collection and preliminary characterization of WCTI

2.1 Purification and characterization of a β-trypsin and α-chymotrypsin inhibitor protein (WCTI) from winged bean seeds

2.2 Crystallization of WCTI
 2.2.1 Methods
 2.2.2 Results

2.3 X-ray diffraction analysis
 2.3.1 Preliminary characterization of WCTI crystals by precession method
 2.3.2 Data collection
 2.3.2.1 Theory
 2.3.2.2 Methods
 2.3.2.3 Results

2.4 Measurement of crystal density by Ficoll density gradient method and calculation of Matthew's coefficient (V_M)

2.5 Space group determination

2.6 Discussion

3 Solution of WCTI structure by the molecular replacement method

3.1 Introduction
 3.1.1 An overview
 3.1.2 AMoRe

3.2 Structure solution
 3.2.1 Self-rotation map
 3.2.2 MR calculations by AMoRe
 3.2.2.1 Selection of search model
 3.2.2.2 Details of the calculation steps
 3.2.2.3 Results of MR calculations

3.3 Confirmation of MR results
3.3.1 Molecular packing

3.3.2 Search of Cross-rotation peaks with subtracted amplitudes (|F_o|-|F_c|)

3.3.3 Electron density map from MR phases

3.4 NCS operators

3.5 Discussion

4 Refinement and structural analysis of WCTI

4.1 Introduction

4.2 Crystallographic refinement and model building

4.3 Results

4.3.1 Quality of electron density

4.3.2 Quality of the final model

4.3.3 The overall structure

4.3.4 Comparison of four independent molecules in the asymmetric unit

4.3.5 Hydrogen bonding

4.3.6 Crystal packing

4.4 Structural comparison with other members of STI-Kunitz family

4.4.1 Overall comparison

4.4.2 Reactive site loop

4.5 Comparisons with structurally homologous families other than STI-Kunitz

4.6 Discussion

5 Modeling of the recognition site of WCTI and its cognate proteinases: A docking study

5.1 Introduction

5.1.1 Overview of macromolecular docking methods

5.1.2 Analysis of the proteinase-inhibitor complexes available in the protein data bank

5.1.3 Binding epitopes of β-Trypsin and α-Chymotrypsin

5.2 Docking studies of WCTI with its cognate proteinases: β-Trypsin and α-Chymotrypsin
5.2.1 Optimization of the crystallographic model of WCTI
5.2.2 Validation of the energy minimized model and selection of a chain for docking studies
5.2.3 Optimization of initial docked complexes by MULTIDOCK

5.3 Results
5.3.1 Analysis of the docked complexes, WCTI;β-BPT and WCTI;α-CHYM using protein-protein interaction server
5.3.2 Interaction between WCTI and β-trypsin
5.3.3 Interaction of WCTI with α-Chymotrypsin

5.4 Discussion

6 Conclusion

Part II

7. X-ray crystal structure of a Oxorhenium(V) cysteine complex
7.1 Introduction
7.2 Experimental
 7.2.1 Collection of the X-ray data
 7.2.2 Solution of structure
7.3 Results and discussion

8 Appendix – 1
A1 Molecular dynamics simulation of the reactive site loop of a winged bean trypsin/chymotrypsin inhibitor (WCTI)

9 References