X-RAY CRYSTALLOGRAPHIC STUDIES OF A FEW ADRENERGIC DRUGS AND THEIR INTERACTIONS

Thesis submitted to the Jadavpur University in partial fulfilment for the degree of
DOCTOR OF PHILOSOPHY (Science)
by Rakhi Sengupta

Rakhi Sengupta, M.Sc.
Senior Research Fellow,
Crystallography and Molecular Biology Division,
Saha Institute of Nuclear Physics,
1/AF Bidhannagar, Calcutta - 700064
India
CONTENTS

Preface

Part I

Chapter

1 Adrenergic drugs: a brief overview
 1.1 Introduction 1
 1.2 Subtype selective adrenergic drugs 5
 1.3 Therapeutic applications 9
 1.4 Structure-activity studies 10
 1.4.1 Phenethylamines 11
 1.4.2 Imidazolines 20

2 Crystal structure of an adrenergic agonist:
 Mephentermine hemisulfate monohydrate
 2.1 Introduction 33
 2.2 Experimental 33
 2.3 Structure solution and refinement 37
 2.4 Results and discussion 43
 2.4.1 Bond lengths and angles 43
5 Summary and conclusion

5.1 Phenethylamines
 a) Structural and conformational features 95
 b) Crystal packing and molecular interactions 100

5.2 Imidazolines
 a) Structural and conformational features 101
 b) Crystal packing and molecular interactions 106

5.3 Comparison between phenethylamines and imidazolines 107

5.4 Conclusion 108

Part II

Chapter

6 G-protein coupled receptors (GPCRs)

6.1 Introduction 110

6.2 GPCR linked signal transduction pathway 111

6.3 Structure of G proteins 111

6.4 Different types of G protein coupled receptors 113

6.4.1 Adrenergic receptors 113

6.5 Biochemical studies of GPCRs 115

6.6 Ligand binding and G protein activation regions 116

6.7 Structure of GPCRs 118

6.8 Structure of Bacteriorhodopsin 118

6.9 Structure of Rhodopsin 120
6.10 Modeling of GPCRs

6.11 Purpose of 3D modeling of α_{2A}- adrenergic receptor from human platelets

7 Modeling of α_{2A}- adrenergic receptor from human platelets and study of ligand- receptor interactions

7.1 Introduction

7.2 Identification of the seven TM helical regions
 a) Hydrophobicity plots
 b) Algorithm of Eisenberg, Schwarz, Komaromy and Wall
 c) Method of Klein, Kanehisa and DeLisi

7.2.1 Results and discussion

7.3 Helix construction and packing

7.3.1 Principles of helix packing

7.3.2 Surface complementarity function

7.3.3 S_c calculations for bacteriorhodopsin

7.3.4 Helix topology

7.3.5 Helix construction

7.3.6 Helix packing to form hepta-helical bundle
 a) Coarse grid conformational search
 b) Construction of the helix-bundle
 c) Fine grid conformational search
 d) Construction of loops

7.4 Discussion of the model

7.5 Docking of ligands to α_{2A}- AR model

7.5.1 Site-directed mutagenesis data of α_{2A} - AR
7.5.2 Ligand docking

7.5.3 Results and discussion
 a) Docking of phenethylamines
 b) Docking of imidazolines
 c) Important interhelical contacts
 d) Attempts to dock a few β specific drugs

7.6 Conclusion

References