Reactions in Stellar Explosions
(T ~ 10^7-10^9 K, varying densities)

Studied at HRIBF:

\(^{17}\text{F}(p,\gamma)^{18}\text{Ne}\)

\(^{17}\text{O},^{18}\text{F}\) production

\(^{18}\text{F}(p,\alpha)^{15}\text{N}\) and \(^{18}\text{F}(p,\gamma)^{19}\text{Ne}\)

\(^{15}\text{N},^{18}\text{F}\) production

\(^{17}\text{O}/^{18}\text{O}\) ratios
The $^{17}\text{F}(p,g)^{18}\text{Ne}$ reaction rate

- Capture rate is comparable to the beta decay rate in novae.

- Two contributions to the rate:
 - Direct capture
 - 3^+ resonance
The Holifield RIB Facility at Oak Ridge National Lab

- ORIC
- Hot, fibrous production target
- 25 MV tandem
- Ion source
- Mass analysis
- RIB (300 keV)

p, d, or a

To experiments
Energy and width of 3^+ measured via $^{17}\text{F} + p$ scattering

- ~ 8000 ^{17}F/s
- $48 \mu g/cm^2$ polypropylene (CH_2) target
- Protons detected in large SIicon Detector ARray (SIDAR)
- Heavy ions detected in coincidence by ionization counter

$E_r = 599.8 \pm 2.5$ keV
$\Gamma = 18.0 \pm 2.2$ keV
$E_x = 4523.7 \pm 2.9$ keV

- 3^+ resonance is too high in energy to contribute significantly to the rate at nova temperatures.
- Direct capture dominates, but cross section is unmeasured. Estimates based on ^{18}O.
- Direct capture cross section is too small to be measured at available ^{17}F intensities.
THE $^{17}\text{F}(p,\gamma)^{18}\text{Ne}$ DIRECT CAPTURE CROSS SECTION

aOak Ridge National Laboratory, Oak Ridge, TN, USA
bOhio University, Athens, OH, USA
cTexas A&M University, College Station, TX, USA
dUniversity of North Carolina, Chapel Hill, NC, USA
eInstituto Superior Técnico, Lisboa, Portugal
fUniversity of Edinburgh, Edinburgh, UK
gColorado School of Mines, Golden, CO, USA
hTennessee Technological University, Cookeville, TN, USA
iMichigan State University, East Lansing, MI, USA
jYale University, New Haven, CT, USA
kRutgers University, New Brunswick, NJ, USA
Direct capture cross section can be determined by measuring ANC’s (or spectroscopic factors) from proton transfer reactions

- Direct capture occurs via an electromagnetic transition at large radii.

- The cross section can be accurately calculated from the Asymptotic Normalization Coefficients (ANC’s) with little model dependence.

- The ANC’s can be determined by measuring the cross section for peripheral proton transfer reactions.
Some Remarks on the “ANC Method”

- The idea to use transfer reactions (via spectroscopic factors) to constrain direct capture (DC) has been around since at least the early 1970s.

- Mukhamedzhanov and collaborators contributed the important observation that both the DC and transfer cross section depend mostly asymptotic tail of the bound state (ANC).

- For transfer reactions, the choices of kinematics and reaction can be exploited to reduce theoretical uncertainties. Experimental realities may limit the choices.

- Error analysis must consider model parameters (e.g. optical potentials) as well the reaction mechanism (e.g. 2-step processes, compound-nuclear processes).
Proton transfer reactions are difficult in inverse kinematics (new experimental techniques are required)

- For stable targets the \(^3\text{He},d\) reaction can achieve \(~15\ \text{keV}\) resolution using a magnetic spectrograph.

- Inverse kinematics and low beam intensities (in the case of radioactive ion beams) produce several complications.

- \((d,n)\): gas target? CD\(_2\) target? Neutron detection?
- \(^3\text{He},d\): gas target? Poor kinematics for detecting the deuteron.
- \((^7\text{Li},^6\text{He})\) or \((^{14}\text{N},^{13}\text{C})\)

- The beam-like nucleus can be detected, but energy resolution tends to be poor.

- Gamma-ray tagging can be used for bound excited states.
$^{14}\text{N}(^{17}\text{F}, ^{18}\text{Ne}^\ast)^{13}\text{C}$ at the HRIBF

- The direct capture cross section is dominated by capture to excited states in ^{18}Ne.
- Gamma rays were detected by the CLARION array in coincidence with ^{18}Ne to resolve the states of interest.
Charged-particle spectra

- 18Ne is the strongest neon group, but populated two ways:
 - Good Z separation, but (so far) poor isotopic separation in strip detector
 - Charged-particle energy resolution is not good enough (yet) to separate any of the states of interest in 18Ne.

Particle ID
Summed over whole detector

- 14N(17F, 18Ne*)13C
- 12C(17F, 18Ne*)11B

![Graph showing charged-particle spectra]
Gammas needed to resolve states

- data analysis in progress
- DWBA calculations with no free parameters
- S factor ~ 30% higher than shell model calculations
- Expect to accurately determine direct capture cross section within 10%.

\[^{14}\text{N}(^{17}\text{F}, ^{18}\text{Ne}_{4+})^{13}\text{C} \]
$^{14}\text{N}(^{17}\text{F},^{17}\text{F})^{14}\text{N}$ Measurement

- Silicon Detector Array $\theta_{\text{lab}}=7^\circ-18^\circ$
- Gas Ionization Counter

[Diagram showing the experimental setup with a ^{17}F beam of 170 MeV, $^{13}\text{C}_2\text{N}_6\text{H}_6$ target, and detection of ^{17}F with a silicon detector.]
These data constrain the Optical Model parameters for the transfer reaction.
\[^{17}\text{F}(p,\gamma)^{18}\text{Ne} \] resonant cross section

- Amplitude of \(3^+\) resonance is uncertain.
- Dominates the reaction rate at higher temperatures.
- We hope to measure the \(^{17}\text{F}(p,g)^{18}\text{Ne} \) resonant cross section using a \(\text{H}_2 \) gas target and the DRS.

windowless \(\text{H}_2 \) gas target
10 mg/cm\(^2\)

\[^{17}\text{F} \] beam
10\(^7\) pps
10 MeV

\(^{18}\text{Ne} \) from \(^1\text{H}(^{17}\text{F},^{18}\text{Ne}) \) reaction detected by gas ionization counter.

The Daresbury Recoil Separator

ExB velocity filters

4 \(^{18}\text{Ne} \)/day
$^{18}\text{F}(p,\alpha)^{15}\text{O}$ and $^{18}\text{F}(p,\gamma)^{19}\text{Ne}$

- Several resonances may be important for nova temperatures
- $^{18}\text{F}(p,\alpha)$ can be measured directly, but not over the entire energy range needed for novae.
- Transfer reactions and mirror symmetry can also be used.
Experimental Approach

CH$_2$ target

$\sim 5 \times 10^5$ 18F/sec

Si Strip Detectors
Results
$^2\text{H}(^{18}\text{F},p)^{19}\text{F}$ at the HRIBF (6 MeV/u)

$^{18}\text{F}(d,p)^{18}\text{F}(6.6\text{ MeV})$

$\theta_{\text{lab}} \approx 116^\circ - 160^\circ$

$\theta_{\text{cm}} \approx 7^\circ - 29^\circ$

~ 3 days of data with

5×10^5 ^{18}F/s on target.
$^{18}\text{F}(d,p)^{19}\text{F}$

proton spectrum

$\theta_{\text{lab}} = 147^\circ$
Proton Transfer on 18F

Appeared to be difficult…
but the 19Ne states of interest break up into
15O+α which provides a unique signature.

Our new approach to (d,n) and (d,p):

18F + 2H \Rightarrow 19Ne* + n \Rightarrow 15O + α + n

\Rightarrow 19F* + p \Rightarrow 15N + α + p

without detecting the n or p.

- The 15O and α are detected with position-sensitive Si strip detectors.
- The relative energy can thus be reconstructed.
- This approach is less sensitive to target thickness (720 μg/cm2 was used).
- Work of my student: Remi Adekola
Reconstructing the Relative Energy

Reaction:

\[^{18}\text{F} + ^{2}\text{H} \rightarrow ^{19}\text{Ne}^* + \text{n} \rightarrow ^{15}\text{O} + \alpha + \text{n} \]

Relative energy of the state

\[E_{rel} = \frac{1}{m_1 + m_2} \left[m_1 E_2 + m_2 E_1 - 2 \cos \theta_{12} \sqrt{m_1 m_2 E_1 E_2} \right] \]

\[E_x = E_{th} + E_{rel} \]

\[Q = E_1 + E_2 + E_3 - E_A \]
- Each telescope is 5 cm x 5 cm and located ~45 cm downstream from the target.
- Inner ΔEs are 65 μm; outers are 140 mm; E detectors are 1 mm.
Particles identification histogram
Outer Telescope
Energy resolution in c.m. system is \sim70 keV.
Our Present Understanding

<table>
<thead>
<tr>
<th>E_r (keV)</th>
<th>J^π</th>
<th>Γ_p (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$3/2^+$</td>
<td>4×10^{-37}</td>
</tr>
<tr>
<td>26</td>
<td>$1/2^-$</td>
<td>3×10^{-20}</td>
</tr>
<tr>
<td>38</td>
<td>$3/2^+$</td>
<td>2×10^{-14}</td>
</tr>
<tr>
<td>287</td>
<td>$5/2^+$</td>
<td>4×10^{-5}</td>
</tr>
<tr>
<td>330</td>
<td>$3/2^-$</td>
<td>$2.2(0.7) \times 10^{-3}$</td>
</tr>
<tr>
<td>665</td>
<td>$3/2^+$</td>
<td>$15.2(1.0)$</td>
</tr>
</tbody>
</table>

![Graph showing $^{16}\text{F}(\rho,\alpha)^{16}\text{O}$ reaction](image)
Reaction Rate

Note: SPI/INTEGRAL should be able to see 511-keV photons following a nova outburst provided it is with ~5kpc of earth.
Interfering $3/2^+$ Resonances
For the Future:

- Complete analysis of proton transfer data.

- Measure $^{18}\text{F}(p,\alpha)^{15}\text{O}$ at lower energies?

- Measure spectroscopy with $^{17}\text{O}{}^{3}\text{He,n}^{19}\text{Ne}$.