Chiral Perturbation Theory and Lattice QCD

H. Leutwyler
University of Bern

School on Quantum Field Theories on Lattice

Saha Institute of Nuclear Physics, Kolkata 2-6 December, 2013

I. Standard Model at Iow energies

1. Interactions

Local symmetries
2. $Q E D+Q C D$

Precision theory for $E \ll 100 \mathrm{GeV}$
Qualitative difference QED \Longleftrightarrow QCD
3. Chiral symmetry

Some of the quarks happen to be light
Approximate chiral symmetry
Spontaneous symmetry breakdown

4. Goldstone theorem

If N_{f} of the quark masses are put equal to zero QCD contains $N_{f}^{2}-1$ Nambu-Goldstone bosons

5. Gell-Mann-Oakes-Renner relation

 Quark masses break chiral symmetryNGBs pick up mass
M_{π}^{2} is proportional to $m_{u}+m_{d}$

II. Chiral perturbation theory

6. Group geometry

Symmetry group of the Hamiltonian G
Symmetry group of the ground state H
Nambu-Goldstone bosons live on G / H
7. Generating functional of QCD

Collects the Green functions of the theory
8. Ward identities

Symmetries of the generating functional
9. Low energy expansion

Taylor series in powers of external momenta NGBs generate infrared singularities

10. Effective Lagrangian

Singularities due to the Nambu-Goldstone bosons can be worked out with an effective field theory.
11. Explicit construction of $\mathcal{L}_{\text {eff }}$

III. Illustrations

12. Some tree level calculations

Leading terms of the chiral perturbation series for the quark condensate and for M_{π}, F_{π}
13. M_{π} beyond tree level

Contributions to M_{π} at NL and NNL orders

14. F_{π} to one loop

Chiral logarithm in F_{π}, low energy theorem for scalar radius

15. Pion form factors

Charge radius of the pion, scalar radius Dispersion relations

16. Lattice results for $M_{\boldsymbol{\pi}}, \boldsymbol{F}_{\boldsymbol{\pi}}$

Determination of the low energy
constants ℓ_{3}, ℓ_{4} on the lattice
17. $\pi \pi$ scattering
χ PT, lattice, precision experiments
18. Conclusions for $\mathrm{SU}(2) \times \mathrm{SU}(2)$
19. Expansion in powers of \boldsymbol{m}_{s}

Form of the effective Lagrangian, lattice results for the LEC
20. Zweig rule
21. Quark mass ratios
22. Conclusions for $\operatorname{SU}(3) \times \operatorname{SU}(3)$
23. $T \neq 0$
24. Finite volume

Exercises

I. Standard Model at Iow energies

1. Interactions

strong weak e.m. gravity
$S U(3) \times S U(2) \times U(1) \times D$

Gravity
understood only at classical level
gravitational waves $\sqrt{ }$
quantum theory of gravity ?
classical theory adequate for distances large compared to

$$
\ell_{\text {Planck }} \equiv \sqrt{\frac{G \hbar}{c^{3}}}=1.6 \cdot 10^{-35} \mathrm{~m}
$$

Units

- The constants $c, \hbar, \epsilon_{0}, k$ can be used to express masses, lengths, times, charges, degrees in energy units.
- mass in energy units: $m=m_{\text {SI }} c^{2}$
$\left[m_{\mathrm{SI}}\right]=1 \mathrm{~kg},[m]=1 \mathrm{~J}$
$1 \mathrm{eV}=1.602 \ldots 10^{-19} \mathrm{~J}$
- length in energy units: $\ell=\frac{\ell_{\mathrm{SI}}}{\hbar c}$
$\left[\ell_{\mathrm{SI}}\right]=1 \mathrm{~m},[\ell]=1 \mathrm{~J}^{-1}$
$1 \mathrm{fm}^{-1}=197.32 \mathrm{MeV}$
- velocity becomes dimensionless: $\quad v=\frac{v_{\text {SI }}}{c}$
- charge also dimensionless:

$$
e=\frac{e_{\mathrm{SI}}}{\sqrt{\epsilon_{0} \hbar c}}
$$

\Rightarrow Fine structure constant:

$$
\alpha=\frac{e_{\mathrm{SI}}^{2}}{4 \pi \epsilon_{0} \hbar c}=\frac{e^{2}}{4 \pi}
$$

\Rightarrow Bohr radius:

$$
a_{\mathrm{Bohr}}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{e_{\mathrm{SI}}^{2} m_{e \mathrm{SI}}}=\frac{4 \pi}{e^{2} m_{e}}
$$

- In energy units, the numerical values of the four constants are $c=\hbar=\epsilon_{0}=k=1$.
- Standard Model is a precision theory for the structure of matter
- constituents, building blocks: u, d, e
- held together by strong and electromagnetic interactions: gluons, photons
- at low energies, weak interaction only generates tiny, calculable corrections

Briefly discuss the qualitative properties of the weak, electromagnetic and strong interactions at low energies

Weak interaction

- frozen at low energies

$$
E \ll M_{\mathrm{w}} c^{2} \simeq 80 \mathrm{GeV}
$$

- heavy quarks and leptons decay into light ones
- $s, c, b, t, \mu, \tau, \nu_{e}, \nu_{\mu}, \nu_{\tau}$ only contribute indirectly, via quantum fluctuations

Electromagnetic interaction

- Final form of the laws obeyed by the electromagnetic field: J. C. Maxwell 1865

Royal Society Transactions 155 (1865) 459

survived relativity and quantum theory, unharmed.

- Schrödinger equation for electrons in an electromagnetic field:
$\frac{1}{i} \frac{\partial \psi}{\partial t}-\frac{1}{2 m_{e}^{2}}(\vec{\nabla}+i e \vec{A})^{2} \psi-e \varphi \psi=0$
contains the potentials \vec{A}, φ
- only $\vec{E}=-\vec{\nabla} \varphi-\frac{\partial \vec{A}}{\partial t}$ and $\vec{B}=\vec{\nabla} \times \vec{A}$ are of physical significance
- Fock pointed out that the Schrödinger equation is invariant under a group of local transformations:

$$
\vec{A}^{\prime}=\vec{A}+\vec{\nabla} f, \quad \varphi^{\prime}=\varphi-\frac{\partial f}{\partial t}, \quad \psi^{\prime}=e^{-i e f} \psi
$$

describe the same physical situation as \vec{A}, φ, ψ

- Weyl termed these gauge transformations
- Equivalence principle of the e.m. interaction:
ψ physically equivalent to $e^{-i e f} \psi$
- $e^{-i e f}$ is unitary 1×1 matrix, $e^{-i e f} \in U(1)$ $f=f(\vec{x}, t)$ space-time dependent function
- gauge invariance \Longleftrightarrow local $U(1)$ symmetry electromagnetic field is gauge field of $U(1)$

Weyl 1929

- U(1) symmetry + renormalizability fully determine the e.m. interaction

Strong interaction

nuclei $=\mathrm{p}+\mathrm{n} \sim 1930$

- Nuclear forces

Stueckelberg, Yukawa ~ 1935
$V_{e . m .}=-\frac{e^{2}}{4 \pi r}$
$V_{s}=-\frac{h^{2}}{4 \pi r} e^{-\frac{r}{r_{0}}}$
$\frac{e^{2}}{4 \pi} \simeq \frac{1}{137}$
long range
$\frac{h^{2}}{4 \pi} \simeq 13$
short range

$$
\begin{array}{ll}
r_{0}=\infty & r_{0}=\frac{\hbar}{M_{\pi} c}=1.4 \cdot 10^{-15} \mathrm{~m} \\
M_{\gamma}=0 & M_{\pi} c^{2} \simeq 140 \mathrm{MeV}
\end{array}
$$

- Problem with Yukawa formula:
p and n are extended objects
diameter comparable to range of force
formula only holds for $r \gg$ diameter
- Protons, neutrons composed of quarks

$$
\mathrm{p}=u u d \quad \mathrm{n}=u d d
$$

- Quarks carry internal quantum number

$$
u=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \quad d=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right)
$$

occur in 3 "colours"

- Strong interaction is invariant under local rotations in colour space

1973
$u^{\prime}=U \cdot u \quad d^{\prime}=U \cdot d$
$U=\left(\begin{array}{lll}U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33}\end{array}\right) \in \operatorname{SU}(3)$

- Can only be so if the strong interaction is also mediated by a gauge field gauge field of $\mathrm{SU}(3) \Rightarrow$ strong interaction Quantum chromodynamics

Comparison of e.m. and strong interaction

	QED	QCD
symmetry	U(1)	SU(3)
gauge field	\vec{A}, φ	gluon field
particles	photons	uo
ce	charge	olo
coupling constant	e	g

- All charged particles generate e.m. field
- All coloured particles generate gluon field
- Leptons do not interact strongly because they do not carry colour
- Equivalence principle of the strong interaction:

$$
U \cdot\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \text { physically equivalent to }\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)
$$

2. QED+QCD

Effective theory for $E \ll M_{\mathrm{w}} c^{2} \simeq 80 \mathrm{GeV}$

Symmetry
Lagrangian
$U(1) \times S U(3)$
QED + QCD

- Dynamical variables:
gauge fields for photons and gluons
Fermi fields for leptons and quarks
- Interaction fully determined by group geometry Lagrangian contains 2 coupling constants

$$
e, g
$$

- Quark and lepton mass matrices can be brought to diagonal form, eigenvalues real, positive

$$
m_{e}, m_{\mu}, m_{\tau}, m_{u}, m_{d}, m_{s}, m_{c}, m_{b}, m_{t}
$$

- Transformation generates vacuum angle
\square
- Precision theory for cold matter, atomic structure, solids, ...

Bohr radius: $\quad a=\frac{4 \pi}{e^{2} m_{e}}$

- θ breaks $C P$

Neutron dipole moment is very small
\Rightarrow strong upper limit, $\theta \simeq 0$

Qualitative difference between e.m. and strong interactions

- Photons do not have charge
- Gluons do have colour

$$
\begin{aligned}
& x_{1} \cdot x_{2}=x_{2} \cdot x_{1} \text { for } x_{1}, x_{2} \in U(1) \quad \text { abelian } \\
& x_{1} \cdot x_{2} \neq x_{2} \cdot x_{1} \text { for } x_{1}, x_{2} \in \operatorname{SU(3)}
\end{aligned}
$$

\Rightarrow Consequence for vacuum polarization

$$
e<\left.e\right|_{\text {bare }}
$$

vacuum shields charge vacuum amplifies colour
\Rightarrow The electromagnetic and strong interactions polarize the vacuum very differently.

Comparison with gravity

- source of gravitational field: energy gravitational field does carry energy
- source of e.m. field: charge e.m. field does not carry charge
- source of gluon field: colour gluon field does carry colour

$$
\pi^{+} \text {-meson }
$$

gravity
strong interaction

Perihelion shift of Mercury:

$$
43^{\prime \prime}=50^{\prime \prime}-7_{\Uparrow}^{\prime \prime} \text { per century }
$$

- Force between u and \bar{u} :

$$
\begin{aligned}
& V_{s}=-\frac{4}{3} \frac{g^{2}}{4 \pi r}, \quad g \rightarrow 0 \quad \text { for } \quad r \rightarrow 0 \\
& \frac{g^{2}}{4 \pi}=\frac{6 \pi}{\left(11 N_{c}-2 N_{f}\right)\left|\ln \left(r \wedge_{\mathrm{QCD}}\right)\right|} \\
& \left|\ln \left(r \wedge_{\mathrm{QCD}}\right)\right| \simeq 7 \quad \text { for } r=\frac{\hbar}{M_{\mathrm{Z}} c} \simeq 2 \cdot 10^{-18} \mathrm{~m}
\end{aligned}
$$

- Vacuum amplifies gluonic field of a bare quark
- Field energy surrounding isolated quark $=\infty$ Only colour neutral states have finite energy
\Rightarrow Confinement of colour
- \nexists analytic proof that QCD does confine colour. Very good evidence from numerical simulations on a lattice.

QED: interaction weak at low energies
QCD: interaction strong at low energies

photons, leptons nearly decouple
gluons, quarks confined

- Nuclear forces $=$ van der Waals forces of QCD

3. Chiral symmetry

- Photons are extremely useful to probe QCD

Much of what we know about the structure of the hadrons stems from scattering experiments involving electrons or photons
$e+N \rightarrow e+N$
$e+N \rightarrow e+$ hadrons
deep inelastic scattering electroproduction, photoproduction

- For bound states of quarks, e.m. interaction is a small perturbation

Perturbation series in powers of $\frac{e^{2}}{4 \pi} \sqrt{ }$
Discuss only the leading term: set $e=0$

- Lagrangian then reduces to QCD

$$
g, m_{u}, m_{d}, m_{s}, m_{c}, m_{b}, m_{t}
$$

- m_{u}, m_{d}, m_{s} happen to be light

Consequence:
Approximate flavour symmetries
Play a crucial role for the low energy properties

Theoretical paradise

$$
\begin{aligned}
& m_{u}=m_{d}=m_{s}=0 \\
& m_{c}=m_{b}=m_{t}=\infty \\
& \text { QCD with } 3 \text { massless quarks }
\end{aligned}
$$

- Lagrangian contains a single parameter: g
g is net colour of a quark depends on radius of the region considered
- Colour contained within radius r

$$
\frac{g^{2}}{4 \pi}=\frac{2 \pi}{9\left|\ln \left(r \wedge_{\mathrm{QCD}}\right)\right|}
$$

- Intrinsic scale $\Lambda_{Q C D}$ is meaningful, but not dimensionless
\Rightarrow No dimensionless free parameter
All dimensionless physical quantities are pure numbers, determined by the theory
Cross sections can be expressed in terms of $\Lambda_{\text {QCD }}$ or in the mass of the proton
- Interactions of u, d, s are identical If the masses are set equal to zero, there is no difference at all

$$
q=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

- Lagrangian symmetric under $u \leftrightarrow d \leftrightarrow s$

$$
q^{\prime}=V \cdot q \quad V \in \operatorname{SU}(3)
$$

V acts on quark flavour, mixes u, d, s

- More symmetry: For massless fermions, right and left do not communicate
\Rightarrow Lagrangian of massless QCD is invariant under independent rotations of the right- and lefthanded quark fields

$$
\begin{array}{cl}
q_{\mathrm{R}}= & \frac{1}{2}\left(1+\gamma_{5}\right) q, \\
q_{\mathrm{R}}^{\prime}=V_{\mathrm{R}} \cdot q_{\mathrm{R}} & q_{\mathrm{L}}^{\prime}=V_{\mathrm{L}} \cdot q_{\mathrm{L}} \\
\operatorname{SU}\left(1-\gamma_{5}\right) q \\
\mathrm{R}
\end{array}
$$

- Massless QCD invariant under $\operatorname{SU}(3)_{R} \times \operatorname{SU}(3)_{\mathrm{L}}$ SU(3) has 8 parameters
\Rightarrow Symmetry under Lie group with 16 parameters
$\Rightarrow 16$ conserved "charges"
$Q_{1}^{\vee}, \ldots, Q_{8}^{\vee} \quad$ (vector currents, $R+L$)
$Q_{1}^{\mathrm{A}}, \ldots, Q_{8}^{\mathrm{A}} \quad$ (axial currents, $R-L$)
commute with the Hamiltonian:

$$
\left[Q_{i}^{\mathrm{V}}, H_{0}\right]=0 \quad\left[Q_{i}^{\mathrm{A}}, H_{0}\right]=0
$$

"Chiral symmetry" of massless QCD

- Vafa and Witten 1984: state of lowest energy is invariant under the vector charges
$Q_{i}^{\vee}|0\rangle=0$
- Axial charges ? $Q_{i}^{\mathrm{A}}|0\rangle=$?

Two alternatives for axial charges

$Q_{i}^{\mathrm{A}}|0\rangle=0$
Wigner-Weyl realization of G ground state is symmetric

$$
\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle=0
$$

ordinary symmetry
spectrum contains parity partners degenerate multiplets of G

$$
Q_{i}^{\mathrm{A}}|0\rangle \neq 0
$$

Nambu-Goldstone realization of G ground state is asymmetric

$$
\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \neq 0
$$

"order parameter"
spontaneously broken symmetry spectrum contains Nambu-Goldstone bosons degenerate multiplets of $S U(3)_{V} \subset G$

$$
G=S U(3)_{R} \times S U(3)_{L}
$$

- Spontaneous symmetry breakdown was discovered in condensed matter physics:

Spontaneous magnetization selects direction
\Rightarrow Rotation symmetry is spontaneously broken
Nambu-Goldstone bosons = spin waves, magnons

- Nambu 1960: state of lowest energy in particle physics is not invariant under chiral rotations $Q_{i}^{\mathrm{A}}|0\rangle \neq 0$

For dynamical reasons, the state of lowest energy must be asymmetric
\Rightarrow Chiral symmetry is spontaneously broken

- Very strong experimental evidence $\sqrt{ }$
- Theoretical understanding on the basis of the QCD Lagrangian ?
- Analog of Magnetization ?
$\bar{q}_{\mathrm{R}} q_{\mathrm{L}}=\left(\begin{array}{ccc}\bar{u}_{\mathrm{R}} u_{\mathrm{L}} & \bar{d}_{\mathrm{R}} u_{\mathrm{L}} & \bar{s}_{\mathrm{R}} u_{\mathrm{L}} \\ \bar{u}_{\mathrm{R}} d_{\mathrm{L}} & \bar{d}_{\mathrm{R}} d_{\mathrm{L}} & \bar{s}_{\mathrm{R}} d_{\mathrm{L}} \\ \bar{u}_{\mathrm{R}} s_{\mathrm{L}} & \bar{d}_{\mathrm{R}} s_{\mathrm{L}} & \bar{s}_{\mathrm{R}} s_{\mathrm{L}}\end{array}\right)$
Transforms like $(\overline{3}, 3)$ under $\operatorname{SU}(3)_{R} \times \operatorname{SU}(3)_{\mathrm{L}}$
If the ground state were symmetric, the matrix $\langle 0| \bar{q}_{R} q_{\mathrm{L}}|0\rangle$ would have to vanish, because it singles out a direction in flavour space
"quark condensate", is quantitative measure of spontaneous symmetry breaking
"order parameter"
$\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \Leftrightarrow$ magnetization
- Ground state is invariant under SU(3) $\sqrt{ }$
$\Rightarrow\langle 0| \bar{q}_{R} q_{\mathrm{L}}|0\rangle$ is proportional to unit matrix
$\langle 0| \bar{u}_{\mathrm{R}} u_{\mathrm{L}}|0\rangle=\langle 0| \bar{d}_{\mathrm{R}} d_{\mathrm{L}}|0\rangle=\langle 0| \bar{s}_{\mathrm{R}} s_{\mathrm{L}}|0\rangle$
$\langle 0| \bar{u}_{\mathrm{R}} d_{\mathrm{L}}|0\rangle=\ldots=0$

4. Goldstone Theorem

- Consequence of $Q_{i}^{\mathrm{A}}|0\rangle \neq 0$:

$$
H_{0} Q_{i}^{\mathrm{A}}|0\rangle=Q_{i}^{\mathrm{A}} H_{0}|0\rangle=0
$$

spectrum must contain 8 states

$$
Q_{1}^{\mathrm{A}}|0\rangle, \ldots, Q_{8}^{\mathrm{A}}|0\rangle \quad \text { with } \quad E=0
$$

spin 0 , negative parity, octet of $\mathrm{SU}(3)_{V}$
Nambu-Goldstone bosons

- Argument is not water tight:

$$
\begin{aligned}
& \langle 0| Q_{i}^{\mathrm{A}} Q_{k}^{\mathrm{A}}|0\rangle=\int d^{3} x d^{3} y\langle 0| A_{i}^{0}(x) A_{k}^{0}(y)|0\rangle \\
& \langle 0| A_{i}^{0}(x) A_{k}^{0}(y)|0\rangle \text { only depends on } \vec{x}-\vec{y}
\end{aligned}
$$

$\Rightarrow\langle 0| Q_{i}^{\mathrm{A}} Q_{k}^{\mathrm{A}}|0\rangle$ is proportional to the volume of the universe, $\left.\left|Q_{i}^{\mathrm{A}}\right| 0\right\rangle \mid=\infty$

- Rigorous version of Goldstone theorem: $\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \neq 0 \Rightarrow \exists$ massless particles

Proof

$$
\begin{aligned}
& Q=\int d^{3} x \bar{u} \gamma^{0} \gamma_{5} d \\
& {\left[Q, \bar{d} \gamma_{5} u\right]=-\bar{u} u-\bar{d} d}
\end{aligned}
$$

- $F^{\mu}(x-y) \equiv\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x) \bar{d}(y) \gamma_{5} u(y)|0\rangle$

Lorentz invariance $\Rightarrow F^{\mu}(z)=z^{\mu} f\left(z^{2}\right)$
Chiral symmetry $\Rightarrow \partial_{\mu} F^{\mu}(z)=0$

$$
F^{\mu}(z)=\frac{z^{\mu}}{z^{4}} \times \text { constant }\left(\text { for } z^{2} \neq 0\right)
$$

- Spectral decomposition:

$$
\begin{aligned}
& \langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x) \bar{d}(y) \gamma_{5} u(y)|0\rangle= \\
& \sum_{n}\langle 0| \bar{u} \gamma^{\mu} \gamma_{5} d|n\rangle\langle n| \bar{d} \gamma_{5} u|0\rangle e^{-i p_{n}(x-y)}
\end{aligned}
$$

$$
p_{n}^{0} \geq 0 \Rightarrow F^{\mu}(z) \text { is analytic in } z^{0} \text { for } \operatorname{Im} z^{0}<0
$$

$$
F^{\mu}(z)=\frac{z^{\mu}}{\left\{\left(z^{0}-i \epsilon\right)^{2}-\vec{z}^{2}\right\}^{2}} \times \mathrm{constant}
$$

- Positive frequency part of massless propagator: (exercise \# 1)

$$
\begin{aligned}
\Delta^{+}(z, 0) & =\frac{i}{(2 \pi)^{3}} \int \frac{d^{3} p}{2 p^{0}} e^{-i p z}, \quad p^{0}=|\vec{p}| \\
& =\frac{1}{4 \pi i\left\{\left(z^{0}-i \epsilon\right)^{2}-\vec{z}^{2}\right\}}
\end{aligned}
$$

- Result

$$
\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x) \bar{d}(y) \gamma_{5} u(y)|0\rangle=C \partial^{\mu} \Delta^{+}(z, 0)
$$

- Compare Källen-Lehmann representation:

$$
\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x) \bar{d}(y) \gamma_{5} u(y)|0\rangle
$$

$$
\begin{aligned}
& =(2 \pi)^{-3} \int d^{4} p p^{\mu} \rho\left(p^{2}\right) e^{-i p(x-y)} \\
& =\int_{0}^{\infty} d s \rho(s) \partial^{\mu} \Delta^{+}(x-y, s)
\end{aligned}
$$

$\Delta^{+}(z, s) \Longleftrightarrow$ massive propagator

$$
\Delta^{+}(z, s)=\frac{i}{(2 \pi)^{3}} \int d^{4} p \theta\left(p^{0}\right) \delta\left(p^{2}-s\right) e^{-i p z}
$$

\Rightarrow Only massless intermedate states contribute:

$$
\rho(s)=C \delta(s)
$$

- Why only massless intermediate states ?
$\langle n| \bar{d} \gamma_{5} u|0\rangle \neq 0$ only if $\langle n|$ has spin 0
If $|n\rangle$ has spin $0 \Rightarrow\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x)|n\rangle \propto p^{\mu} e^{-i p x}$ $\partial_{\mu}\left(\bar{u} \gamma^{\mu} \gamma_{5} d\right)=0 \Rightarrow p^{2}=0$
\Rightarrow Either \exists massless particles or $C=0$
- Claim: $\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \neq 0 \Rightarrow C \neq 0$

Lorentz invariance, chiral symmetry
$\Rightarrow\langle 0| \bar{d}(y) \gamma_{5} u(y) \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x)|0\rangle=C^{\prime} \partial^{\mu} \Delta^{-}(z)$
$\Rightarrow\langle 0|\left[\bar{u}(x) \gamma^{\mu} \gamma_{5} d(x), \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle$

$$
=C \partial^{\mu} \Delta^{+}(z, 0)-C^{\prime} \partial^{\mu} \Delta^{-}(z, 0)
$$

- Causality: if $x-y$ is spacelike, then $\langle 0|\left[\bar{u}(x) \gamma^{\mu} \gamma_{5} d(x), \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle=0$
$\Rightarrow C^{\prime}=-C$
$\Rightarrow\langle 0|\left[\bar{u}(x) \gamma^{\mu} \gamma_{5} d(x), \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle=C \partial^{\mu} \Delta(z, 0)$
$\Rightarrow\langle 0|\left[Q, \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle=C$
- $\langle 0|\left[Q, \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle=-\langle 0| \bar{u} u+\bar{d} d|0\rangle=C$ Hence $\langle 0| \bar{u} u+d d|0\rangle \neq 0$ implies $C \neq 0$ qed.

5. Gell-Mann-Oakes-Renner relation

\Rightarrow Spectrum of QCD with 3 massless quarks must contain 8 massless physical particles, $J^{P}=0^{-}$

- Indeed, the 8 lightest mesons do have these quantum numbers:
$\pi^{+}, \pi^{0}, \pi^{-}, K^{+}, K^{0}, \bar{K}^{0}, K^{-}, \eta$
But massless they are not
???
- Real world \neq paradise $m_{u}, m_{d}, m_{s} \neq 0$

Quark masses break chiral symmetry, allow the left to talk to the right

- Chiral symmetry broken in two ways: spontaneously
$\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \neq 0$
explicitly
$m_{u}, m_{d}, m_{s} \neq 0$
- H_{QCD} only has approximate symmetry, to the extent that m_{u}, m_{d}, m_{s} are small

$$
\begin{aligned}
& H_{\mathrm{QCD}}=H_{0}+H_{1} \\
& H_{1}=\int d^{3} x\left\{m_{u} \bar{u} u+m_{d} \bar{d} d+m_{s} \bar{s} s\right\}
\end{aligned}
$$

- H_{0} is Hamiltonian of the massless theory, invariant under $\mathrm{SU}(3)_{\mathrm{R}} \times \mathrm{SU}(3)_{\mathrm{L}}$
- H_{1} breaks the symmetry, transforms with $(3, \overline{3}) \oplus(\overline{3}, 3)$
- For the low energy structure of QCD, the heavy quarks do not play an essential role: c, b, t are singlets under $\mathrm{SU}(3)_{\mathrm{R}} \times \mathrm{SU}(3) \mathrm{L}$ Can include the heavy quarks in H_{0}
- Nambu-Goldstone bosons are massless only if the symmetry is exact
- Gell-Mann-Oakes-Renner relation:

$$
\begin{array}{cc}
\left.M_{\pi}^{2}=\left(m_{u}+m_{d}\right) \times|\langle 0| \bar{u} u| 0\right\rangle \left\lvert\, \times \frac{1}{F_{\pi}^{2}}\right. \\
\begin{array}{c}
\Uparrow \\
\text { explicit } \\
\text { spontaneous }
\end{array}
\end{array}
$$

Coefficient: decay constant F_{π}
Derivation

- Pion matrix elements in massless theory:

$$
\begin{aligned}
\langle\mathrm{O}| \bar{u} \gamma^{\mu} \gamma_{5} d\left|\pi^{-}\right\rangle & =i \sqrt{2} F p^{\mu} \\
\langle\mathrm{O}| \bar{u} i \gamma_{5} d\left|\pi^{-}\right\rangle & =\sqrt{2} G
\end{aligned}
$$

Only the one-pion intermediate state

$$
\begin{gathered}
\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x) \bar{d} \bar{d}(y) \gamma_{5} u(y)|0\rangle=C \partial^{\mu} \Delta^{+}(z, 0) \\
\left|\pi^{-}\right\rangle\left\langle\pi^{-}\right|
\end{gathered}
$$

contributes. Hence $2 F G=C$

- Value of C fixed by quark condensate

$$
C=-\langle 0| \bar{u} u+\bar{d} d|0\rangle
$$

\Rightarrow Exact result in massless theory:

$$
F G=-\langle 0| \bar{u} u|0\rangle
$$

- Matrix elements for $m_{\text {quark }} \neq 0$:

$$
\begin{aligned}
\langle 0| \bar{u} \gamma^{\mu} \gamma_{5} d\left|\pi^{-}\right\rangle & =i \sqrt{2} F_{\pi} p^{\mu} \\
\langle 0| \bar{u} i \gamma_{5} d\left|\pi^{-}\right\rangle & =\sqrt{2} G_{\pi}
\end{aligned}
$$

- Current conservation

$$
\begin{gathered}
\partial_{\mu}\left(\bar{u} \gamma^{\mu} \gamma_{5} d\right)=\left(m_{u}+m_{d}\right) \bar{u} i \gamma_{5} d \\
\Rightarrow F_{\pi} M_{\pi}^{2}=\left(m_{u}+m_{d}\right) G_{\pi} \\
M_{\pi}^{2}=\left(m_{u}+m_{d}\right) \frac{G_{\pi}}{F_{\pi}} \quad \text { exact for } m \neq 0
\end{gathered}
$$

- $F_{\pi} \rightarrow F, \quad G_{\pi} \rightarrow G$ for $m \rightarrow 0$

$$
\begin{aligned}
F G & =-\langle 0| \bar{u} u|0\rangle \\
\Rightarrow \frac{G_{\pi}}{F_{\pi}} & =-\frac{\langle 0| \bar{u} u|0\rangle}{F_{\pi}^{2}}+O(m)
\end{aligned}
$$

$$
\Rightarrow M_{\pi}^{2}=\left(m_{u}+m_{d}\right)\left(\frac{-\langle 0| \bar{u} u|0\rangle}{F_{\pi}^{2}}\right)+O\left(m^{2}\right)
$$

$\Rightarrow\langle 0| \bar{u} u|0\rangle \leq 0$ if quark masses are positive

- $M_{\pi}^{2}=\left(m_{u}+m_{d}\right) B+O\left(m^{2}\right)$
$B=\left.\frac{|\langle 0| \bar{u} u| 0\rangle \mid}{F_{\pi}^{2}}\right|_{m_{u}, m_{d} \rightarrow 0}$
- M_{π} disappears if the symmetry breaking is turned off, $m_{u}, m_{d} \rightarrow 0 \sqrt{ }$
- Explains why the pseudoscalar mesons have very different masses

$$
M_{K^{+}}^{2}=\left(m_{u}+m_{s}\right) B+O\left(m^{2}\right)
$$

$$
M_{K^{0}}^{2}=\left(m_{d}+m_{s}\right) B+O\left(m^{2}\right)
$$

$\Rightarrow M_{K}^{2}$ is about 13 times larger than M_{π}^{2}, because m_{u}, m_{d} happen to be small compared to m_{s}

- First order perturbation theory also yields
$M_{\eta}^{2}=\frac{1}{3}\left(m_{u}+m_{d}+4 m_{s}\right) B+O\left(m^{2}\right)$
$\Rightarrow M_{\pi}^{2}-4 M_{K}^{2}+3 M_{\eta}^{2}=O\left(m^{2}\right)$
Gell-Mann-Okubo formula for $M^{2} \sqrt{ }$

Checking the GMOR formula on a lattice

- Can determine M_{π} as function of $m_{u}=m_{d}=m$

Lüscher, Lattice conference 2005
ETM collaboration, hep-lat/0701012

- No quenching, quark masses sufficiently light
\Rightarrow Legitimate to use χ PT for the extrapolation to the physical values of m_{u}, m_{d}
- Quality of data is impressive
- Proportionality of M_{π}^{2} to the quark mass appears to hold out to values of m_{u}, m_{d} that are an order of magnitude larger than in nature
- Main limitation: systematic uncertainties in particular: $N_{f}=2 \rightarrow N_{f}=3$

II. Chiral perturbation theory

Scholarpedia: Chiral Perturbation Theory

6. Group geometry

- QCD with 3 massless quarks:
spontaneous symmetry breakdown from $S U(3)_{R} \times S U(3)_{L}$ to $S U(3)_{V}$ generates 8 Nambu-Goldstone bosons
- Generalization: suppose symmetry group of Hamiltonian is Lie group G
Generators $Q_{1}, Q_{2}, \ldots, Q_{D}, D=\operatorname{dim}(\mathrm{G})$ For some generators $Q_{i}|0\rangle \neq 0$ How many Nambu-Goldstone bosons ?
- Consider those elements of the Lie algebra $Q=\alpha_{1} Q_{1}+\ldots+\alpha_{n} Q_{D}$, for which $Q|0\rangle=0$ These elements form a subalgebra:
$Q|0\rangle=0, Q^{\prime}|0\rangle=0 \Rightarrow\left[Q, Q^{\prime}\right]|0\rangle=0$
Dimension of subalgebra: $d \leq D$
- Of the D vectors $Q_{i}|0\rangle$
$D-d$ are linearly independent
$\Rightarrow D-d$ different physical states of zero mass
$\Rightarrow D-d$ Nambu-Goldstone bosons
- Subalgebra generates subgroup $\mathrm{H} \subset \mathrm{G}$ H is symmetry group of the ground state coset space G/H contains as many parameters as there are Nambu-Goldstone bosons $d=\operatorname{dim}(\mathrm{H}), D=\operatorname{dim}(\mathrm{G})$
\Rightarrow Nambu-Goldstone bosons live on the coset G/H
- Example: QCD with N_{f} massless quarks $G=\operatorname{SU}\left(N_{f}\right)_{R} \times \operatorname{SU}\left(N_{f}\right)_{L}$ $\mathrm{H}=\mathrm{SU}\left(N_{f}\right)_{V}$
$D=2\left(N_{f}^{2}-1\right), d=N_{f}^{2}-1$
$N_{f}^{2}-1$ Nambu-Goldstone bosons
- It so happens that $m_{u}, m_{d} \ll m_{s}$
- $m_{u}=m_{d}=0$ is an excellent approximation $S U(2)_{R} \times S U(2)_{L}$ is a nearly exact symmetry $N_{f}=2, N_{f}^{2}-1=3$ Nambu-Goldstone bosons (pions)

7. Generating functional of QCD

- Basic objects for quantitative analysis of QCD: Green functions of the currents

$$
\begin{aligned}
V_{a}^{\mu} & =\bar{q} \gamma^{\mu} \frac{1}{2} \lambda_{a} q, & A_{a}^{\mu} & =\bar{q} \gamma^{\mu} \gamma_{5} \frac{1}{2} \lambda_{a} q, \\
S_{a} & =\bar{q} \frac{1}{2} \lambda_{a} q, & P_{a} & =\bar{q} i \gamma_{5} \frac{1}{2} \lambda_{a} q
\end{aligned}
$$

Include singlets, with $\lambda_{0}=\sqrt{2 / 3} \times 1$, as well as

$$
\omega=\frac{1}{16 \pi^{2}} \operatorname{tr}_{c} G_{\mu \nu} \widetilde{G}^{\mu \nu}
$$

- Can collect all of the Green functions formed with these operators in a generating functional: Perturb the system with external fields $v_{\mu}^{a}(x), a_{\mu}^{a}(x), s_{a}(x), p^{a}(x), \theta(x)$
Replace the Lagrangian of the massless theory

$$
\text { by } \begin{aligned}
& \mathcal{L}_{0}=-\frac{1}{2 g^{2}} \operatorname{tr}{ }_{c} G_{\mu \nu} G^{\mu \nu}+\bar{q} i \gamma^{\mu}\left(\partial_{\mu}-i G_{\mu}\right) q \\
& \\
& \mathcal{L}_{1}=v_{\mu}^{a} V_{a}^{\mu}+a_{\mu}^{a} A_{a}^{\mu}-s^{a} S_{a}-p^{a} P_{a}-\theta \omega
\end{aligned}
$$

- Quark mass terms are included in the external field $s_{a}(x)$
- |O in \rangle : system is in ground state for $x^{0} \rightarrow-\infty$ Probability amplitude for finding ground state when $x^{0} \rightarrow+\infty$:

$$
\left.e^{i S_{\mathrm{QCD}}\{v, a, s, p, \theta\}}=\langle 0 \text { out }| 0 \text { in }\right\rangle_{v, a, s, p, \theta}
$$

- Expressed in terms of ground state of \mathcal{L}_{0} :

$$
e^{i S_{\mathrm{QCD}}\{v, a, s, p, \theta\}}=\langle 0| T \exp i \int d x \mathcal{L}_{1}|0\rangle
$$

- Expansion of $S_{\mathrm{QCD}}\{v, a, s, p, \theta\}$ in powers of the external fields yields the connected parts of the Green functions of the massless theory

$$
\begin{aligned}
& S_{\mathrm{QCD}}\{v, a, s, p, \theta\}=-\int d x s_{a}(x)\langle 0| S^{a}(x)|0\rangle \\
& +\frac{i}{2} \int d x d y a_{\mu}^{a}(x) a_{\nu}^{b}(y)\langle 0| T A_{a}^{\mu}(x) A_{b}^{\nu}(y)|0\rangle_{\mathrm{conn}}+\ldots
\end{aligned}
$$

- $S_{\mathrm{QCD}}\{v, a, s, p, \theta\}$ is referred to as the generating functional of QCD
- For Green functions of full QCD, set

$$
s_{a}(x)=m_{a}+\tilde{s}_{a}(x), \quad m_{a}=\operatorname{tr} \lambda_{a} m
$$

and expand around $\tilde{s}_{a}(x)=0$

- Path integral representation for generating functional:

$$
e^{i S_{\mathrm{QCD}}\{v, a, s, p\}}=\mathcal{N} \int[d G] e^{i \int d x \mathcal{L}_{\mathrm{G}}} \operatorname{det} D
$$

$$
\mathcal{L}_{\mathrm{G}}=-\frac{1}{2 g^{2}} \operatorname{tr}_{c}^{\operatorname{t}} G_{\mu \nu} G^{\mu \nu}-\frac{\theta}{16 \pi^{2}} \operatorname{tr}_{c} G_{\mu \nu} \widetilde{G}^{\mu \nu}
$$

$$
D=i \gamma^{\mu}\left\{\partial_{\mu}-i\left(G_{\mu}+v_{\mu}+a_{\mu} \gamma_{5}\right)\right\}-s-i \gamma_{5} p
$$

G_{μ} is matrix in colour space
v_{μ}, a_{μ}, s, p are matrices in flavour space
$v_{\mu}(x) \equiv \frac{1}{2} \lambda_{a} v_{\mu}^{a}(x)$, etc.

8. Ward identities

Symmetry in terms of Green functions

- Lagrangian is invariant under

$$
\begin{aligned}
& q_{\mathrm{R}}(x) \rightarrow V_{\mathrm{R}}(x) q_{\mathrm{R}}(x), \quad q_{\mathrm{L}}(x) \rightarrow V_{\mathrm{L}}(x) q_{\mathrm{L}}(x) \\
& V_{\mathrm{R}}(x), V_{\mathrm{L}}(x) \in \mathrm{U}(3)
\end{aligned}
$$

provided the external fields are transformed with

$$
\begin{aligned}
v_{\mu}^{\prime}+a_{\mu}^{\prime} & =V_{\mathrm{R}}\left(v_{\mu}+a_{\mu}\right) V_{\mathrm{R}}^{\dagger}-i \partial_{\mu} V_{\mathrm{R}} V_{\mathrm{R}}^{\dagger} \\
v_{\mu}^{\prime}-a_{\mu}^{\prime} & =V_{\mathrm{L}}\left(v_{\mu}-a_{\mu}\right) V_{\mathrm{L}}^{\dagger}-i \partial_{\mu} V_{\mathrm{L}} V_{\mathrm{L}}^{\dagger} \\
s^{\prime}+i p^{\prime} & =V_{\mathrm{R}}(s+i p) V_{\mathrm{L}}^{\dagger}
\end{aligned}
$$

The operation takes the Dirac operator into

$$
\begin{aligned}
D^{\prime} & =\left\{P_{-} V_{\mathrm{R}}+P_{+} V_{\mathrm{L}}\right\} D\left\{P_{+} V_{\mathrm{R}}^{\dagger}+P_{-} V_{\mathrm{L}}^{\dagger}\right\} \\
P_{ \pm} & =\frac{1}{2}\left(1 \pm \gamma_{5}\right)
\end{aligned}
$$

- det D requires regularization
\nexists symmetric regularization
$\Rightarrow \operatorname{det} D^{\prime} \neq \operatorname{det} D$, only $\left|\operatorname{det} D^{\prime}\right|=|\operatorname{det} D|$
symmetry does not survive quantization
- Change in get D can explicitly be calculated For an infinitesimal transformation
$V_{\mathrm{R}}=1+i \alpha+i \beta+\ldots, \quad V_{\mathrm{L}}=1+i \alpha-i \beta+\ldots$
the change in the determinant is given by

$$
\begin{aligned}
& \operatorname{det} D^{\prime}=\operatorname{det} D e^{-i \int d x\{2\langle\beta\rangle \omega+\langle\beta \Omega\rangle\}} \\
& \langle A\rangle \equiv \operatorname{tr} A \\
& \omega=\frac{1}{16 \pi^{2}} \operatorname{tr}_{c} G_{\mu \nu} \widetilde{G}^{\mu \nu} \\
& \Omega=\frac{N_{c}}{4 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} \partial_{\mu} v_{\nu} \partial_{\rho} v_{\sigma}+\ldots \\
& \text { gluons } \\
& \text { ext. fields }
\end{aligned}
$$

- Consequence for generating functional:

The term with ω amounts to a change in θ,
can be compensated by $\theta^{\prime}=\theta-2\langle\beta\rangle$
Pull term with $\langle\beta \Omega\rangle$ outside the path integral
$\Rightarrow S_{\mathrm{QCD}}\left\{v^{\prime}, a^{\prime}, s^{\prime}, p^{\prime}, \theta^{\prime}\right\}=S_{\mathrm{QCD}}\{v, a, s, p, \theta\}-\int d x\langle\beta \Omega\rangle$

$$
S_{\mathrm{QCD}}\left\{v^{\prime}, a^{\prime}, s^{\prime}, p^{\prime}, \theta^{\prime}\right\}=S_{\mathrm{QCD}}\{v, a, s, p, \theta\}-\int d x\langle\beta \Omega\rangle
$$

- S_{QCD} is invariant under $\mathrm{U}(3)_{\mathrm{R}} \times \mathrm{U}(3)_{\mathrm{L}}$, except for a specific change due to the anomalies
- Relation plays key role in low energy analysis:
collects all of the Ward identities
For the octet part of the axial current,e.g.

$$
\begin{array}{r}
\partial_{\mu}^{x}\langle 0| T A_{a}^{\mu}(x) P_{b}(y)|0\rangle=-\frac{1}{4} i \delta(x-y)\langle 0| \bar{q}\left\{\lambda_{a}, \lambda_{b}\right\} q|0\rangle \\
+\langle 0| T \bar{q}(x) i \gamma_{5}\left\{m, \frac{1}{2} \lambda_{a}\right\} q(x) P_{b}(y)|0\rangle
\end{array}
$$

- Symmetry of the generating functional implies the operator relations

$$
\begin{array}{ll}
\partial_{\mu} V_{a}^{\mu}=\bar{q} i\left[m, \frac{1}{2} \lambda_{a}\right] q, & a=0, \ldots, 8 \\
\partial_{\mu} A_{a}^{\mu}=\bar{q} i \gamma_{5}\left\{m, \frac{1}{2} \lambda_{a}\right\} q, & a=1, \ldots, 8 \\
\partial_{\mu} A_{0}^{\mu}=\sqrt{\frac{2}{3}} \bar{q} i \gamma_{5} m q+\sqrt{6} \omega
\end{array}
$$

- Textbook derivation of the Ward identities goes in inverse direction, but is slippery formal manipulations, anomalies ?

9. Low energy expansion

- If the spectrum has an energy gap
\Rightarrow no singularities in scattering amplitudes or Green functions near $p=0$
\Rightarrow low energy behaviour may be analyzed with Taylor series expansion in powers of p
$f(t)=1+\frac{1}{6}\left\langle r^{2}\right\rangle t+\ldots$ form factor
$T(p)=a+b p^{2}+\ldots$ scattering amplitude
Cross section dominated by
S-wave scattering length $\quad \frac{d \sigma}{d \Omega} \simeq|a|^{2}$
- Expansion parameter: $\frac{p}{m}=\frac{\text { momentum }}{\text { energy gap }}$
- Taylor series only works if the spectrum has an energy gap, i.e. if there are no massless particles
- Illustration: Coulomb scattering

$$
e+e \rightarrow e+e
$$

Photon exchange \Rightarrow pole at $t=0$

$$
T=\frac{e^{2}}{\left(p^{\prime}-p\right)^{2}}
$$

Scattering amplitude does not admit Taylor series expansion in powers of p

- QCD does have an energy gap but the gap is very small: M_{π}
\Rightarrow Taylor series has very small radius of convergence, useful only for $p<M_{\pi}$
- Massless QCD contains infrared singularities due to the Nambu-Goldstone bosons
- For $m_{u}=m_{d}=0$, pion exchange gives rise to poles and branch points at $p=0$
\Rightarrow Low energy expansion is not a Taylor series, contains logarithms

Singularities due to Nambu-Goldstone bosons can be worked out with an effective field theory

Chiral Perturbation Theory
Weinberg, Dashen, Pagels, Gasser, ...

- Chiral perturbation theory correctly reproduces the infrared singularities of QCD
- Quantities of interest are expanded in powers of external momenta and quark masses
- Expansion has been worked out to next-to-leading order for many quantities "Chiral perturbation theory to one loop"
- In quite a few cases, the next-to-next-to-leading order is also known
- Properties of the Nambu-Goldstone bosons are governed by the hidden symmetry that is responsible for their occurrence
Focus on the singularities due to the pions

$$
\begin{aligned}
& H_{\mathrm{QCD}}=H_{0}+H_{1} \\
& H_{1}=\int d^{3} x\left\{m_{u} \bar{u} u+m_{d} \bar{d} d\right\}
\end{aligned}
$$

H_{0} is invariant under $\mathrm{G}=\mathrm{SU}(2)_{\mathrm{R}} \times \mathrm{SU}(2)_{\mathrm{L}}$
$|0\rangle$ is invariant under $\mathrm{H}=\mathrm{SU}(2)_{V}$
mass term of strange quark is included in H_{0}

- Treat H_{1} as a perturbation

Expansion in
powers of H_{1}

Expansion in powers of m_{u}, m_{d}

- Extension to $\operatorname{SU}(3)_{\mathrm{R}} \times \mathrm{SU}(3)_{\mathrm{L}}$ straightforward: include singularities due to exchange of K, η
\Rightarrow Discuss this later, first treat only m_{u}, m_{d} as small quantities, keep m_{s} fixed at the physical value, study the effective theory belonging to $S U(2)_{R} \times S U(2)_{L}$

10. Effective Lagrangian

- Replace quarks and gluons by pions

$$
\begin{aligned}
& \vec{\pi}(x)=\left\{\pi^{1}(x), \pi^{2}(x), \pi^{3}(x)\right\} \\
& \mathcal{L}_{\mathrm{QCD}} \rightarrow \mathcal{L}_{e f f}
\end{aligned}
$$

- Central claim:
A. Effective theory yields alternative representation for generating functional of QCD
$e^{i S_{\mathrm{QCD}}\{v, a, s, p, \theta\}}=\mathcal{N}_{e f f} \int[d \pi] e^{i \int d x \mathcal{L}_{e f f}\{\vec{\pi}, v, a, s, p, \theta\}}$
B. $\mathcal{L}_{\text {eff }}$ has the same symmetries as $\mathcal{L}_{\mathrm{QCD}}$
\Rightarrow Can calculate the low energy expansion of the Green functions with the effective theory. If $\mathcal{L}_{e f f}$ is chosen properly, this reproduces the low energy expansion of QCD, order by order.
- Proof of A and B: H.L., Annals Phys. 1994
- Pions live on the coset $G / H=S U(2)$

$$
\vec{\pi}(x) \rightarrow U(x) \in \operatorname{SU}(2)
$$

The fields $\vec{\pi}(x)$ are the coordinates of $U(x)$
Can use canonical coordinates, for instance

$$
U=\exp i \vec{\pi} \cdot \vec{\tau} \in \operatorname{SU}(2)
$$

- Action of the symmetry group on the quarks:

$$
q_{\mathrm{R}}^{\prime}=V_{\mathrm{R}} \cdot q_{\mathrm{R}}, \quad q_{\mathrm{L}}^{\prime}=V_{\mathrm{L}} \cdot q_{\mathrm{L}}
$$

- Action on the pion field:

$$
U^{\prime}=V_{\mathrm{R}} \cdot U \cdot V_{\mathrm{L}}^{\dagger}
$$

Note: Transformation law for the coordinates $\vec{\pi}$ is complicated, nonlinear

- Except for the contribution from the anomalies, $\mathcal{L}_{\text {eff }}$ is invariant

$$
\mathcal{L}_{e f f}\left\{U^{\prime}, v^{\prime}, a^{\prime}, s^{\prime}, p^{\prime}, \theta^{\prime}\right\}=\mathcal{L}_{e f f}\{U, v, a, s, p, \theta\}
$$

Symmetry of S_{QCD} implies symmetry of $\mathcal{L}_{\text {eff }}$

Side remark

- For nonrelativistic effective theories, the effective Lagrangian is in general invariant only up to a total derivative.
\Rightarrow From the point of view of effective field theory, nonrelativistic systems with Nambu-Goldstone bosons are more complicated than relativistic ones
detailed discussion: H. L., Phys. Rev. D49 (1994) 3033
- Origin of the complication: the generators of the symmetry group may themselves give rise to order parameters

$$
\langle 0| Q^{i}|0\rangle \neq 0
$$

This cannot happen in the relativistic case:

$$
\begin{aligned}
& Q=\int d^{3} x j^{0}(x) \\
& \langle 0| j^{\mu}(x)|0\rangle=0 \Rightarrow\langle 0| Q|0\rangle=0
\end{aligned}
$$

Nonrelativistic example where it does happen: Heisenberg model of a ferromagnet

$$
H=-g \sum_{\langle i j\rangle} \vec{s}_{i} \cdot \vec{s}_{j}
$$

$g>0 \quad \Uparrow \Uparrow$ lower in energy than $\Uparrow \Downarrow$

- Ground state $=\Uparrow \Uparrow \Uparrow \Uparrow \cdots \Uparrow \Uparrow$
- Magnetization: $\vec{M}=\frac{\mu}{V} \sum_{i} \vec{s}_{i}$

$$
\langle 0| \vec{M}|0\rangle \neq 0 \Longleftrightarrow\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \neq 0
$$

- Symmetry generators: $\vec{Q}=\sum_{i} \vec{s}_{i} \propto \vec{M}$
- Hamiltonian is invariant under the full rotation group $G=S O(3)$, ground state is invariant only under rotations around the direction of $\langle 0| \vec{M}|0\rangle, \mathrm{H}=\mathrm{U}(1)$
- Effective field lives on $G / H=S_{2}$: unit vector \vec{U}, parametrized by 2 coordinates π^{1}, π^{2}.
- Effective Lagrangian of ferromagnet is invariant under local rotations only up to a total derivative. Leading term is related to the Brouwer degree of the map $\left(\pi^{1}, \pi^{2}\right) \rightarrow \vec{U}$.

11. Explicit construction of $\mathcal{L}_{e f f}$

- First ignore the external fields,

$$
\mathcal{L}_{e f f}=\mathcal{L}_{e f f}\left(U, \partial U, \partial^{2} U, \ldots\right)
$$

Derivative expansion:

$$
\begin{gathered}
\mathcal{L}_{e f f}=f_{0}(U)+f_{1}(U) \times \square U+f_{2}(U) \times \partial_{\mu} U \times \partial^{\mu} U+\ldots \\
\Uparrow \\
O(1) \\
\Uparrow \\
O\left(p^{2}\right)
\end{gathered}
$$

Amounts to expansion in powers of momenta

- Term of $O(1): f_{0}(U)=f_{0}\left(V_{\mathrm{R}} U V_{\mathrm{L}}^{\dagger}\right)$ $V_{\mathrm{R}}=1, \quad V_{\mathrm{L}}=U \rightarrow V_{\mathrm{R}} U V_{\mathrm{L}}^{\dagger}=1$
$\Rightarrow f_{0}(U)=f_{0}(1)$ irrelevant constant, drop it
- Term with $\square U$: integrate by parts
\Rightarrow can absorb $f_{1}(U)$ in $f_{2}(U)$
\Rightarrow Derivative expansion of $\mathcal{L}_{\text {eff }}$ starts with

$$
\mathcal{L}_{e f f}=f_{2}(U) \times \partial_{\mu} U \times \partial^{\mu} U+O\left(p^{4}\right)
$$

- Replace the partial derivative by

$$
\Delta_{\mu} \equiv \partial_{\mu} U U^{\dagger}, \quad \operatorname{tr} \Delta_{\mu}=0
$$

Δ_{μ} is invariant under $\operatorname{SU}(2)_{\llcorner }$and transforms with the representation $D^{(1)}$ under $S U(2)_{R}$:
$\Delta_{\mu} \rightarrow V_{\mathrm{R}} \Delta_{\mu} V_{\mathrm{R}}^{\dagger}$
In this notation, leading term is of the form

$$
\mathcal{L}_{e f f}=\tilde{f}_{2}(U) \times \Delta_{\mu} \times \Delta^{\mu}+O\left(p^{4}\right)
$$

- Invariance under $\operatorname{SU}(2)_{\mathrm{L}}: \tilde{f}_{2}(U)=\tilde{f}_{2}\left(U V_{\mathrm{L}}^{\dagger}\right)$
$\Rightarrow \tilde{f}_{2}(U)$ is independent of U
- Invariance under $\operatorname{SU}(2)_{\mathrm{R}}: \Delta_{\mu} \times \Delta^{\mu}$ transforms with $D^{(1)} \times D^{(1)} \rightarrow$ contains unity exactly once: $\operatorname{tr}\left(\Delta_{\mu} \Delta^{\mu}\right)=\operatorname{tr}\left(\partial_{\mu} U U^{\dagger} \partial^{\mu} U U^{\dagger}\right)=-\operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)$
\Rightarrow Geometry fixes leading term up to a constant

$$
\mathcal{L}_{e f f}=\frac{F^{2}}{4} \operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)+O\left(p^{4}\right)
$$

$$
\mathcal{L}_{e f f}=\frac{F^{2}}{4} \operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)+O\left(p^{4}\right)
$$

- Lagrangian of the nonlinear σ-model
- Expansion in powers of $\vec{\pi}$:

$$
\begin{gathered}
U=\exp i \vec{\pi} \cdot \vec{\tau}=1+i \vec{\pi} \cdot \vec{\tau}-\frac{1}{2} \vec{\pi}^{2}+\ldots \\
\Rightarrow \mathcal{L}_{e f f}=\frac{F^{2}}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}+\frac{F^{2}}{48} \operatorname{tr}\left\{\left[\partial_{\mu} \pi, \pi\right]\left[\partial^{\mu} \pi, \pi\right]\right\}+\ldots
\end{gathered}
$$

For the kinetic term to have the standard normalization: rescale the pion field, $\vec{\pi} \rightarrow \vec{\pi} / F$
$\mathcal{L}_{e f f}=\frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}+\frac{1}{48 F^{2}} \operatorname{tr}\left\{\left[\partial_{\mu} \pi, \pi\right]\left[\partial^{\mu} \pi, \pi\right]\right\}+\ldots$
\Rightarrow a. Symmetry requires the pions to interact b. Derivative coupling: Nambu-Goldstone bosons only interact if their momentum does not vanish $\Rightarrow \lambda / \pi^{4}$

- Expression given for $\mathcal{L}_{\text {eff }}$ only holds if the external fields are turned off. Also, $\operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)$ is invariant only under global transformations - Suffices to replace $\partial_{\mu} U$ by

$$
D_{\mu} U=\partial_{\mu} U-i\left(v_{\mu}+a_{\mu}\right) U+i U\left(v_{\mu}-a_{\mu}\right)
$$

In contrast to $\operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)$, the term $\operatorname{tr}\left(D_{\mu} U D^{\mu} U^{\dagger}\right)$ is invariant under local $\mathrm{SU}(2)_{\mathrm{R}} \times \mathrm{SU}(2)_{\mathrm{L}}$

- Can construct further invariants: $s+i p$ transforms like $U \Rightarrow \operatorname{tr}\left\{(s+i p) U^{\dagger}\right\}$ is invariant Violates parity, but $\operatorname{tr}\left\{(s+i p) U^{\dagger}\right\}+\operatorname{tr}\{(s-i p) U\}$ is even under $p \rightarrow-p, \vec{\pi} \rightarrow-\vec{\pi}$
- In addition, \exists invariant independent of U : $D_{\mu} \theta D^{\mu} \theta$, with $D_{\mu} \theta=\partial_{\mu} \theta+2 \operatorname{tr}\left(a_{\mu}\right)$
- Count the external fields as

$$
\theta=O(1), \quad v_{\mu}, a_{\mu}=O(p), \quad s, p=O\left(p^{2}\right)
$$

- Derivative expansion yields string of the form

$$
\mathcal{L}_{e f f}=\mathcal{L}^{(2)}+\mathcal{L}^{(4)}+\mathcal{L}^{(6)}+\ldots
$$

- Full expression for leading term:

$$
\begin{aligned}
\mathcal{L}^{(2)} & =\frac{F^{2}}{4}\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+U \chi^{\dagger}\right\rangle+h_{0} D_{\mu} \theta D^{\mu} \theta \\
\chi & \chi 2 B(s+i p), \quad\langle X\rangle \equiv \operatorname{tr}(X)
\end{aligned}
$$

- At LO, symmetry allows 2 "low energy constans" (F, B) plus 1 "contact term" (h_{0})
- Next-to-leading order:

$$
\begin{aligned}
\mathcal{L}^{(4)} & =\frac{\ell_{1}}{4}\left\langle D_{\mu} U D^{\mu} U^{\dagger}\right\rangle^{2}+\frac{\ell_{2}}{4}\left\langle D_{\mu} U D_{\nu} U^{\dagger}\right\rangle \\
& +\frac{\ell_{3}}{4}\left\langle\chi U^{\dagger}+U \chi^{\dagger}\right\rangle^{2}+\frac{\ell_{4}}{4}\left\langle D_{\mu} \chi D^{\mu} U^{\dagger}+D_{\mu} U D^{\mu} \chi^{\dagger}\right\rangle \\
& +\ldots
\end{aligned}
$$

- Altogether 7 LE + 3 CT at NLO
- Number of LEC rapidly grows with the order of the expansion
- Infinitely many LEC

Symmetry does not determine these Predictivity ?

- Essential point: If $\mathcal{L}_{e f f}$ is known to given order \Rightarrow can work out low energy expansion of the Green functions to that order Weinberg 1979
- F_{π}, M_{π} involve 2 LEC at NLO: ℓ_{3}, ℓ_{4}.
- In the $\pi \pi$ scattering amplitude, two further LEC enter at $N L O: \ell_{1}, \ell_{2}$.
- Note: effective theory is a quantum field theory Need to perform the path integral

$$
e^{i S_{\mathrm{QCD}}\{v, a, s, p, \theta\}}=\mathcal{N}_{e f f} \int[d U] e^{i \int d x \mathcal{L}_{e f f}\{U, v, a, s, p, \theta\}}
$$

- Classical theory \Leftrightarrow tree graphs Need to include graphs with loops
- Power counting in dimensional regularization: Graphs with ℓ loops are suppressed by factor $p^{2 \ell}$ as compared to tree graphs
\Rightarrow Leading contributions given by tree graphs Graphs with one loop contribute at next-toleading order, etc.
- The leading contribution to S_{QCD} is given by the sum of all tree graphs = classical action:

$$
S_{\mathrm{QCD}}\{v, a, s, p, \theta\}=\underset{U(x)}{\operatorname{extremum}} \int d x \mathcal{L}_{\text {eff }}\{U, v, a, s, p, \theta\}
$$

III. Illustrations

12. Some tree level calculations

12.1 Extracting the quark condensate from the generating functional

$$
\begin{gathered}
e^{i S_{\mathrm{QCD}}\{v, a, s, p, \theta\}}=\langle 0| T \exp i \int d x \mathcal{L}_{1}|0\rangle \\
S_{\mathrm{QCD}}\{v, a, s, p, \theta\}=-\int d x s_{a}(x)\langle 0| S^{a}(x)|0\rangle \\
+\frac{i}{2} \int d x d y a_{\mu}^{a}(x) a_{\nu}^{b}(y)\langle 0| T A_{a}^{\mu}(x) A_{b}^{\nu}(y)|0\rangle_{\mathrm{conn}}+\ldots
\end{gathered}
$$

12.2 Condensate in terms of effective theory

- Need the effective action for $v=a=p=\theta=0$ to first order in s
\Rightarrow classical level of effective theory suffices.
- extremum of the classical action: $U=1$

$$
S_{\mathrm{QCD}}^{1}=\int d x F^{2} B \operatorname{tr} s(x)
$$

$s(x)=\lambda_{a} s^{a}(x)$

- comparison with

$$
\begin{gather*}
S_{\mathrm{QCD}}^{1}=-\int d x s_{a}(x)\langle 0| S^{a}(x)|0\rangle \\
\langle\mathrm{O}| \bar{u} u|0\rangle=\langle 0| \bar{d} d|0\rangle=-F^{2} B \tag{1}
\end{gather*}
$$

Quark condensate in chiral limit:

$\Sigma=|\langle 0| \bar{u} u| 0\rangle\left.\right|_{m_{u}, m_{d} \rightarrow 0}$
$\Sigma=F^{2} B$
Lattice result (FLAG 2013, arXiv:1310.8555):

$$
\begin{array}{ll}
N_{f}=2: & \Sigma=270(7) \mathrm{MeV} \\
N_{f}=2+1: & \Sigma=265(17) \mathrm{MeV}
\end{array}
$$

12.3 Evaluation of M_{π} at tree level

- In classical theory, the square of the mass is the coefficient of the term in the Lagrangian that is quadratic in the meson field:

$$
\begin{align*}
& \qquad \begin{aligned}
\frac{F^{2}}{4}\left\langle\chi U^{\dagger}+\right. & \left.U \chi^{\dagger}\right\rangle=\frac{F^{2} B}{2}\left\langle m\left(U^{\dagger}+U\right)\right\rangle \\
& =F^{2} B\left(m_{u}+m_{d}\right)\left\{1-\frac{\vec{\pi}^{2}}{2 F^{2}}+\ldots\right\}
\end{aligned} \\
& \text { Hence } \quad M_{\pi}^{2}=\left(m_{u}+m_{d}\right) B
\end{align*}
$$

- Tree level result for F_{π} :

$$
\begin{equation*}
F_{\pi}=F \tag{3}
\end{equation*}
$$

- $(1)+(2)+(3) \Rightarrow$ GMOR relation:

$$
M_{\pi}^{2}=\frac{\left.\left(m_{u}+m_{d}\right)|\langle 0| \bar{u} u| 0\right\rangle \mid}{F_{\pi}^{2}}
$$

13. M_{π} beyond tree level

- The formula $M_{\pi}^{2}=\left(m_{u}+m_{d}\right) B$ only holds at tree level, represents leading term in expansion of M_{π}^{2} in powers of m_{u}, m_{d}
- Disregard isospin breaking: set $m_{u}=m_{d}=m$

$13.1 M_{\pi}$ to 1 loop

- Claim: at next-to-leading order, the expansion of M_{π}^{2} in powers of m contains a logarithm:

$$
\begin{aligned}
& M_{\pi}^{2}=M^{2}-\frac{1}{2} \frac{M^{4}}{(4 \pi F)^{2}} \ln \frac{\wedge_{3}^{2}}{M^{2}}+O\left(M^{6}\right) \\
& M^{2} \equiv 2 m B
\end{aligned}
$$

- Proof: Pion mass \Leftrightarrow pole position, for instance in the Fourier transform of $\langle 0| T A_{a}^{\mu}(x) A_{b}^{\nu}(y)|0\rangle$ Suffices to work out the perturbation series for this object to one loop of the effective theory

- Result (exercise \# 5):

$$
M_{\pi}^{2}=M^{2}+\frac{2 \ell_{3} M^{4}}{F^{2}}+\frac{M^{2}}{2 F^{2}} \frac{1}{i} \Delta\left(0, M^{2}\right)+O\left(M^{6}\right)
$$

$\Delta\left(0, M^{2}\right)$ is the propagator at the origin (exercise \# 2):

$$
\begin{aligned}
\Delta\left(0, M^{2}\right) & =\frac{1}{(2 \pi)^{d}} \int \frac{d^{d} p}{M^{2}-p^{2}-i \epsilon} \\
& =i(4 \pi)^{-d / 2} \Gamma(1-d / 2) M^{d-2}
\end{aligned}
$$

- Contains a pole at $d=4$:

$$
\Gamma(1-d / 2)=\frac{2}{d-4}+\ldots
$$

- Divergent part is proportional to M^{2} :

$$
\begin{aligned}
M^{d-2} & =M^{2} \mu^{d-4}(M / \mu)^{d-4}=M^{2} \mu^{d-4} e^{(d-4) \ln (M / \mu)} \\
& =M^{2} \mu^{d-4}\{1+(d-4) \ln (M / \mu)+\ldots\}
\end{aligned}
$$

- Denote the singular factor by

$$
\begin{aligned}
\lambda & \equiv \frac{1}{2}(4 \pi)^{-d / 2} \Gamma(1-d / 2) \mu^{d-4} \\
& =\frac{\mu^{d-4}}{16 \pi^{2}}\left\{\frac{1}{d-4}-\frac{1}{2}\left(\ln 4 \pi+\Gamma^{\prime}(1)+1\right)+O(d-4)\right\}
\end{aligned}
$$

- The propagator at the origin then becomes

$$
\frac{1}{i} \Delta\left(0, M^{2}\right)=M^{2}\left\{2 \lambda+\frac{1}{16 \pi^{2}} \ln \frac{M^{2}}{\mu^{2}}+O(d-4)\right\}
$$

- In the expression for M_{π}^{2}

$$
M_{\pi}^{2}=M^{2}+\frac{2 \ell_{3} M^{4}}{F^{2}}+\frac{M^{2}}{2 F^{2}} \frac{1}{i} \Delta\left(0, M^{2}\right)+O\left(M^{6}\right)
$$

the divergence can be absorbed in ℓ_{3} :

$$
\ell_{3}=-\frac{1}{2} \lambda+\ell_{3}^{\text {ren }}
$$

- $\ell_{3}^{\text {ren }}$ depends on the renormalization scale μ
$\ell_{3}^{\text {ren }}=\frac{1}{64 \pi^{2}} \ln \frac{\mu^{2}}{\Lambda_{3}^{2}}$ running low energy constant
- Λ_{3} is the ren. group invariant scale of ℓ_{3}
- Net result for M_{π}^{2}

$$
M_{\pi}^{2}=M^{2}-\frac{1}{2} \frac{M^{4}}{(4 \pi F)^{2}} \ln \frac{\Lambda_{3}^{2}}{M^{2}}+O\left(M^{6}\right)
$$

$\Rightarrow M_{\pi}^{2}$ contains a chiral logarithm at NLO

- Crude estimate for \wedge_{3}, based on $\operatorname{SU}(3)$ mass formulae for the pseudoscalar octet:

$$
\begin{align*}
& 0.2 \mathrm{GeV}<\Lambda_{3}<2 \mathrm{GeV} \\
& \bar{\ell}_{3} \equiv \ln \frac{\Lambda_{3}^{2}}{M_{\pi}^{2}}=2.9 \pm 2.4
\end{align*}
$$

\exists better determination $\bar{\ell}_{3}$ on the lattice, to be discussed later
\Rightarrow Next-to-leading term is small correction:

$$
0.005<\frac{1}{2} \frac{M_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \ln \frac{\wedge_{3}^{2}}{M_{\pi}^{2}}<0.040
$$

- Scale of the expansion is set by size of pion mass in units of decay constant:

$$
\frac{M^{2}}{(4 \pi F)^{2}} \simeq \frac{M_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}}=0.0144
$$

$13.2 M_{\pi}$ to 2 loops

- Terms of order $m_{\text {quark }}^{3}$:

$$
\begin{aligned}
M_{\pi}^{2} & =M^{2}-\frac{1}{2} \frac{M^{4}}{(4 \pi F)^{2}} \ln \frac{\Lambda_{3}^{2}}{M^{2}} \\
& +\frac{17}{18} \frac{M^{6}}{(4 \pi F)^{4}}\left(\ln \frac{\Lambda_{\mathrm{M}}^{2}}{M^{2}}\right)^{2}+k_{\mathrm{M}} M^{6}+O\left(M^{8}\right)
\end{aligned}
$$

F is pion decay constant for $m_{u}=m_{d}=0$ ChPT to two loops Colangelo 1995

- Coefficients $\frac{1}{2}$ and $\frac{17}{18}$ determined by symmetry - $\wedge_{3}, \wedge_{\mathrm{M}}$ and $k_{\mathrm{M}} \Longleftrightarrow$ LEC in $\mathcal{L}_{e f f}$

14. F_{π} to one loop

- Also contains a logarithm at NLO:

$$
\begin{aligned}
& F_{\pi}=F\left\{1-\frac{M^{2}}{16 \pi^{2} F^{2}} \ln \frac{M^{2}}{\Lambda_{4}^{2}}+O\left(M^{4}\right)\right\} \\
& M_{\pi}^{2}=M^{2}\left\{1+\frac{M^{2}}{32 \pi^{2} F^{2}} \ln \frac{M^{2}}{\Lambda_{3}^{2}}+O\left(M^{4}\right)\right\}
\end{aligned}
$$

F is pion decay constant in limit $m_{u}, m_{d} \rightarrow 0$

- Structure is the same, coefficients and scale of logarithm are different
- Low energy theorem: at leading order in the chiral expansion, the scalar radius is also determined by the scale \wedge_{4} :

$$
\left\langle r^{2}\right\rangle_{s}=\frac{6}{(4 \pi F)^{2}}\left\{\ln \frac{\Lambda_{4}^{2}}{M^{2}}-\frac{13}{12}+O\left(M^{2}\right)\right\}
$$

Chiral symmetry relates F_{π} to $\left\langle r^{2}\right\rangle_{s}$
What is the scalar radius ? \Rightarrow next section

15. Pion form factors

- Scalar form factor of the pion:

$$
F_{s}(t)=\left\langle\pi\left(p^{\prime}\right)\right| \bar{q} q|\pi(p)\rangle, \quad t=\left(p^{\prime}-p\right)^{2}
$$

- Definition of scalar radius:

$$
F_{s}(t)=F_{s}(0)\left\{1+\frac{1}{6}\left\langle r^{2}\right\rangle_{s} t+O\left(t^{2}\right)\right\}
$$

- Low energy theorem:

$$
\left\langle r^{2}\right\rangle_{s}=\frac{6}{(4 \pi F)^{2}}\left\{\ln \frac{\Lambda_{4}^{2}}{M^{2}}-\frac{13}{12}+O\left(M^{2}\right)\right\}
$$

\Rightarrow In massless QCD, the scalar radius diverges, because the density of the pion cloud only decreases with a power of the distance

- Same infrared singularity also occurs in the charge radius (e.m. current), but coefficient of the chiral logarithm is 6 times smaller:

$$
\begin{aligned}
\left\langle r^{2}\right\rangle_{s} & =\frac{6}{(4 \pi F)^{2}}\left\{\ln \frac{\Lambda_{4}^{2}}{M^{2}}-\frac{13}{12}+O\left(M^{2}\right)\right\} \\
\left\langle r^{2}\right\rangle_{e m} & =\frac{1}{(4 \pi F)^{2}}\left\{\ln \frac{\Lambda_{6}^{2}}{M^{2}}-1+O\left(M^{2}\right)\right\} \\
\Rightarrow & \left\langle r^{2}\right\rangle_{s}>\left\langle r^{2}\right\rangle_{e m} \text { if } M \text { small enough }
\end{aligned}
$$

- $\left\langle r^{2}\right\rangle_{e m}$ can be determined experimentally

$$
\left\langle r^{2}\right\rangle_{e m}=0.439 \pm 0.008 \mathrm{fm}^{2}
$$

NA7 Collaboration, NP B277 (1986) 168

- Scalar form factor of the pion can be calculated by means of dispersion theory
- Result for the slope:

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \pm 0.04 \mathrm{fm}^{2}
$$

Colangelo, Gasser, L., Nucl. Phys. 2001
\Rightarrow Corresponding value of the scale Λ_{4} :

$$
\Lambda_{4}=1.26 \pm 0.14 \mathrm{GeV}
$$

16. Lattice results for M_{π}, F_{π}

16.1 Results for M_{π}

- Determine the scale Λ_{3} by comparing the lattice results for M_{π} as function of m with the χ PT formula

$$
\begin{aligned}
& M_{\pi}^{2}=M^{2}-\frac{1}{2} \frac{M^{4}}{(4 \pi F)^{2}} \ln \frac{\wedge_{3}^{2}}{M^{2}}+O\left(M^{6}\right) \\
& M^{2} \equiv 2 B m
\end{aligned}
$$

lattice results for $\bar{\ell}_{3}$

Horizontal axis shows the value of $\bar{\ell}_{3} \equiv \ln \frac{\Lambda_{3}^{2}}{M_{\pi}^{2}}$
Range for Λ_{3} obtained in 1984 corresponds to $\bar{\ell}_{3}=2.9 \pm 2.4$

	$N_{f}=2$	$N_{f}=2+1$	$N_{f}=2+1+1$
$\bar{\ell}_{3}$	3.45 ± 0.26	2.77 ± 1.27	3.70 ± 0.27

FLAG 2013

16.2 Results for $\boldsymbol{F}_{\boldsymbol{\pi}}$

$$
F_{\pi}=F\left\{1-\frac{M^{2}}{16 \pi^{2} F^{2}} \ln \frac{M^{2}}{\Lambda_{4}^{2}}+O\left(M^{4}\right)\right\}
$$

Horizontal axis shows the value of $\bar{\ell}_{4} \equiv \ln \frac{\Lambda_{4}{ }^{2}}{M_{\pi}^{2}}$

- Lattice results beautifully confirm the prediction for the sensitivity of F_{π} to m_{u}, m_{d} :

$$
\frac{F_{\pi}}{F}=1.072 \pm 0.007
$$

17. $\pi \pi$ scattering

17.1 Low energy scattering of pions

- Consider scattering of pions with $\vec{p}=0$
- At $\vec{p}=0$, only the S-waves survive (angular momentum barrier). Moreover, these reduce to the scattering lengths
- Bose statistics: S-waves cannot have $I=1$, either have $I=0$ or $I=2$
\Rightarrow At $\vec{p}=0$, the $\pi \pi$ scattering amplitude is characterized by two constants: a_{0}^{0}, a_{0}^{2}
- Chiral symmetry suppresses the interaction at low energy: Nambu-Goldstone bosons of zero momentum do not interact
$\Rightarrow \quad a_{0}^{0}, a_{0}^{2}$ disappear in the limit $m_{u}, m_{d} \rightarrow 0$
$\Rightarrow \quad a_{0}^{0}, a_{0}^{2} \sim M_{\pi}^{2}$ measure symmetry breaking

17.2 Tree level of $\chi \mathbf{P T}$

- Low Energy theorem Weinberg 1966:

$$
\begin{aligned}
& a_{0}^{0}=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}+O\left(M_{\pi}^{4}\right) \\
& a_{0}^{2}=-\frac{M_{\pi}^{2}}{16 \pi F_{\pi}^{2}}+O\left(M_{\pi}^{4}\right)
\end{aligned}
$$

\Rightarrow Chiral symmetry predicts a_{0}^{0}, a_{0}^{2} in terms of F_{π}

- Accuracy is limited: Low energy theorem only specifies the first term in the expansion in powers of the quark masses
Corrections from higher orders ?

17.3 Scattering lengths at 1 loop

- Next term in the chiral perturbation series:

$$
a_{0}^{0}=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}\left\{1+\frac{9}{2} \frac{M_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \ln \frac{\Lambda_{0}^{2}}{M_{\pi}^{2}}+O\left(M_{\pi}^{4}\right)\right\}
$$

- Coefficient of chiral logarithm unusually large Strong, attractive final state interaction
- Scale Λ_{0} is determined by the LEC of $\mathcal{L}_{\text {eff }}^{(4)}$:

$$
\frac{9}{2} \ln \frac{\Lambda_{0}^{2}}{M_{\pi}^{2}}=\frac{20}{21} \bar{\ell}_{1}+\frac{40}{21} \bar{\ell}_{2}-\frac{5}{14} \bar{\ell}_{3}+2 \bar{\ell}_{4}+\frac{5}{2}
$$

- Information about $\bar{\ell}_{1}, \ldots, \bar{\ell}_{4}$?

$$
\bar{\ell}_{1}, \bar{\ell}_{2} \Longleftrightarrow \begin{aligned}
& \text { momentum dependence } \\
& \text { of scattering amplitude }
\end{aligned}
$$

\Rightarrow Can be determined phenomenologically
$\bar{\ell}_{3}, \bar{\ell}_{4} \Longleftrightarrow \begin{aligned} & \text { dependence of scattering } \\ & \text { amplitude on quark masses }\end{aligned}$ Have discussed their values already

17.4 Numerical predictions from $\chi \mathbf{P T}$

Sizable corrections in $a_{0}^{0} \mid a_{0}^{2}$ nearly stays put

$17.5 a_{0}^{0}, a_{0}^{2}$ from lattice results for ℓ_{3}, ℓ_{4}

- Uncertainty in prediction for a_{0}^{0}, a_{0}^{2} is dominated by the uncertainty in the LEC ℓ_{3}, ℓ_{4}
- Can make use of the lattice results for these

17.6 Experiments concerning a_{0}^{0}, a_{0}^{2}

- Production experiments $\pi N \rightarrow \pi \pi N$, $\psi \rightarrow \pi \pi \omega, B \rightarrow D \pi \pi, \ldots$

Problem: pions are not produced in vacuo
\Rightarrow Extraction of $\pi \pi$ scattering amplitude is not simple

Accuracy rather limited

- $K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$ data:

CERN-Saclay, E865, NA48/2

- $K^{ \pm} \rightarrow \pi^{0} \pi^{0} \pi^{ \pm}, K^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}$: cusp near threshold, NA48/2
- $\pi^{+} \pi^{-}$atoms, DIRAC

17.7 Results from $K_{e 4}$ decay

$K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$

- Allows clean measurement of $\delta_{0}^{0}-\delta_{1}^{1}$

Theory predicts $\delta_{0}^{0}-\delta_{1}^{1}$ as function of energy

Prediction: $a_{0}^{0}=0.220 \pm 0.005$
NA48/2: $a_{0}^{0}=0.2206 \pm \underset{\text { stat }}{0.0049} \pm \underset{\text { syst }}{0.0018} \pm 0_{\text {theo }}^{0.0064}$ Bloch-Devaux, Chiral Dynamics 2009

- There was a discrepancy here, because a pronounced isospin breaking effect from
$K \rightarrow \pi^{0} \pi^{0} e \nu \rightarrow \pi^{+} \pi^{-} e \nu$
had not been accounted for in the data analysis
Colangelo, Gasser, Rusetsky 2007, Bloch-Devaux 2007

- The correction is not enormous, but matters: If a_{0}^{0} is determined from the uncorrected NA48 data, the central value comes out higher than the theoretical prediction by about 4 times the uncertainty attached to this prediction.

17.8 Summary for a_{0}^{0}, a_{0}^{2}

18. Conclusions for $\operatorname{SU}(2) \times \operatorname{SU}(2)$

- Expansion in powers of m_{u}, m_{d} yields a very accurate low energy representation of QCD
- Lattice results confirm the GMOR relation
$\Rightarrow M_{\pi}$ is dominated by the contribution from the quark condensate
\Rightarrow Energy gap of QCD is understood very well
- Lattice approach allows an accurate measurement of the low energy constant ℓ_{3} already now
- Even for ℓ_{4}, the lattice starts becoming competitive with dispersion theory

Exercises

1. Evaluate the positive frequency part of the massless propagator

$$
\Delta^{+}(z, 0)=\frac{i}{(2 \pi)^{3}} \int \frac{d^{3} k}{2 k^{0}} e^{-i k z}, \quad k^{0}=|\vec{k}|
$$

for $\operatorname{Im} z^{0}<0$. Show that the result can be represented as

$$
\Delta^{+}(z, 0)=\frac{1}{4 \pi i z^{2}}
$$

2. Evaluate the d-dimensional propagator

$$
\Delta(z, M)=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{e^{-i k z}}{M^{2}-k^{2}-i \epsilon}
$$

at the origin and verify the representation

$$
\Delta(0, M)=\frac{i}{4 \pi} \Gamma\left(1-\frac{d}{2}\right)\left(\frac{M^{2}}{4 \pi}\right)^{\frac{d}{2}-1}
$$

How does this expression behave when $d \rightarrow 4$?
3. Leading order effective Lagrangian:

$$
\begin{aligned}
\mathcal{L}^{(2)} & =\frac{F^{2}}{4}\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+U \chi^{\dagger}\right\rangle+h_{0} D_{\mu} \theta D^{\mu} \theta \\
D_{\mu} U & =\partial_{\mu} U-i\left(v_{\mu}+a_{\mu}\right) U+i U\left(v_{\mu}-a_{\mu}\right) \\
\chi & =2 B(s+i p) \\
D_{\mu} \theta & =\partial_{\mu} \theta+2\left\langle a_{\mu}\right\rangle \\
\langle X\rangle & =\operatorname{tr} X
\end{aligned}
$$

- Take the space-time independent part of the external field $s(x)$ to be isospin symmetric (i. e. set $m_{u}=m_{d}=m$):

$$
s(x)=m 1+\tilde{s}(x)
$$

- Expand $U=\exp i \phi / F$ in powers of $\phi=\vec{\phi} \cdot \vec{\tau}$ and check that, in this normalization of the field ϕ, the kinetic part takes the standard form

$$
\mathcal{L}^{(2)}=\frac{1}{2} \partial_{\mu} \vec{\phi} \cdot \partial^{\mu} \vec{\phi}-\frac{1}{2} M^{2} \vec{\phi}^{2}+\ldots
$$

with $M^{2}=2 m B$.

- Draw the graphs for all of the interaction vertices containing up to four of the fields $\phi, v_{\mu}, a_{\mu}, \tilde{s}, p, \theta$.

4. Show that the classical field theory belonging to the QCD Lagrangian in the presence of external fields is invariant under

$$
\begin{aligned}
v_{\mu}^{\prime}+a_{\mu}^{\prime} & =V_{\mathrm{R}}\left(v_{\mu}+a_{\mu}\right) V_{\mathrm{R}}^{\dagger}-i \partial_{\mu} V_{\mathrm{R}} V_{\mathrm{R}}^{\dagger} \\
v_{\mu}^{\prime}-a_{\mu}^{\prime} & =V_{\mathrm{L}}\left(v_{\mu}-a_{\mu}\right) V_{\mathrm{L}}^{\dagger}-i \partial_{\mu} V_{\mathrm{L}} V_{\mathrm{L}}^{\dagger} \\
s^{\prime}+i p^{\prime} & =V_{\mathrm{R}}(s+i p) V_{\mathrm{L}}^{\dagger} \\
q_{\mathrm{R}}^{\prime} & =V_{\mathrm{R}} q_{\mathrm{R}}(x) \\
q_{\mathrm{L}}^{\prime} & =V_{\mathrm{L}} q_{\mathrm{L}}
\end{aligned}
$$

where $V_{\mathrm{R}}, V_{\mathrm{L}}$ are space-time dependent elements of $\mathrm{U}(3)$.
5. Evaluate the pion mass to NLO of $\chi \mathrm{PT}$. Draw the relevant graphs and verify the representation

$$
M_{\pi}^{2}=M^{2}+\frac{2 \ell_{3} M^{4}}{F^{2}}+\frac{M^{2}}{2 F^{2}} \frac{1}{i} \Delta\left(0, M^{2}\right)+O\left(M^{6}\right)
$$

6. Start from the symmetry property of the effective action,

$$
S_{\mathrm{QCD}}\left\{v^{\prime}, a^{\prime}, s^{\prime}, p^{\prime}, \theta^{\prime}\right\}=S_{\mathrm{QCD}}\{v, a, s, p, \theta\}-\int d x\langle\beta \Omega\rangle
$$

and show that this relation in particular implies the Ward identity

$$
\begin{aligned}
& \partial_{\mu}^{x}\langle 0| T A_{a}^{\mu}(x) P_{b}(y)|0\rangle=-\frac{1}{4} i \delta(x-y)\langle 0| \bar{q}\left\{\lambda_{a}, \lambda_{b}\right\} q|0\rangle \\
&+\langle 0| T \bar{q}(x) i \gamma_{5}\left\{m, \frac{1}{2} \lambda_{a}\right\} q(x) P_{b}(y)|0\rangle \\
& a=1, \ldots, 8, b=0, \ldots, 8
\end{aligned}
$$

7. What is the Ward identity obeyed by the singlet axial current,

$$
\partial_{\mu}^{x}\langle 0| T A_{0}^{\mu}(x) P_{b}(y)|0\rangle=?
$$

19. Expansion in powers of m_{s}

- The χ PT formulae for the expansion of many quantities of physical interest in powers of m_{u}, m_{d}, m_{s} have been worked out to NNLO, not only masses and decay constants, also form factors, $\eta \rightarrow 3 \pi$,
- Theoretical reasoning:

Pion physics: expansion in powers of m_{u}, m_{d} works very well.
Physics of the strange particles: $\mathrm{SU}(3) \mathrm{v}$ is an approximate symmetry.
\Rightarrow Symmetry breaking parameter $m_{s}-m_{u d}$ must be small, meaningful to expand in powers of $m_{s}-m_{u d}$.

- Since $m_{u}, m_{d} \ll m_{s}$
$\Rightarrow m_{s}$ can be treated as a perturbation
\Rightarrow Expect expansion in powers of m_{s} to work, but convergence to be comparatively slow
- I do not know of an alternative explanation of the empirical fact that $\operatorname{SU}(3)$ is an approximate symmetry.

19.1 Form of the effective Lagrangian

- If all three light quark masses vanish, the QCD Lagrangian is invariant under $\operatorname{SU}(3)_{\mathrm{R}} \times \mathrm{SU}(3)_{\mathrm{L}}$
- The spontaneous breakdown to $\operatorname{SU}(3)$ v generates eight Nambu-Goldstone bosons: $\pi^{ \pm}, \pi^{0}, K^{ \pm}, K^{0}, \bar{K}^{0}, \eta$
\Rightarrow Effective fields can be collected in $U \in \operatorname{SU}(3)$

$$
\begin{aligned}
& U(x)=\exp i \pi(x) \\
& \pi(x)=\lambda_{1} \pi^{1}(x)+\ldots+\lambda_{8} \pi^{8}(x)
\end{aligned}
$$

- Symmetry again fixes the leading term in $\mathcal{L}_{\text {eff }}$:

$$
\begin{gathered}
\mathcal{L}^{(2)}=\frac{F_{0}^{2}}{4}\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+U \chi^{\dagger}\right\rangle+\frac{H_{0}}{12} D_{\mu} \theta D^{\mu} \theta \\
\chi \equiv 2 B_{0}(s+i p), \quad\langle X\rangle \equiv \operatorname{tr}(X)
\end{gathered}
$$

- U is now $3 \times 3, \chi$ is 3×3, otherwise the form of the Lagrangian is the same as for $\operatorname{SU}(2)_{R} \times S U(2)_{L}$:
- Symmetry does not determine F_{0}, B_{0}, H_{0}

$$
\begin{gathered}
\mathcal{L}^{(2)}=\frac{F_{0}^{2}}{4}\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+U \chi^{\dagger}\right\rangle+\frac{H_{0}}{12} D_{\mu} \theta D^{\mu} \theta \\
\chi \equiv 2 B_{0}(s+i p), \quad\langle X\rangle \equiv \operatorname{tr}(X)
\end{gathered}
$$

- Significance of F_{0}, B_{0} : leading terms in the expansion of the decay constants and meson masses in powers of the quark masses:

$$
\begin{aligned}
& \langle 0| \bar{u} \gamma_{\mu} \gamma_{5} d\left|\pi^{-}\right\rangle=\sqrt{2} F_{0} p^{\mu}\{1+O(m)\} \\
& \langle 0| \bar{u} \gamma_{\mu} \gamma_{5} s\left|K^{-}\right\rangle=\sqrt{2} F_{0} p^{\mu}\{1+O(m)\} \\
& \langle 0| \bar{d} \gamma_{\mu} \gamma_{5} s\left|K^{0}\right\rangle=\sqrt{2} F_{0} p^{\mu}\{1+O(m)\} \\
& M_{\pi^{-}}^{2}=\left(m_{u}+m_{d}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{-}}^{2}=\left(m_{u}+m_{s}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{0}}^{2}=\left(m_{d}+m_{s}\right) B_{0}+O\left(m^{2}\right)
\end{aligned}
$$

- The expansion includes m_{s}
$\Rightarrow F_{0}, B_{0}$ are independent of m_{u}, m_{d}, m_{s}
- In the effective theory built on $\operatorname{SU}(2)_{R} \times S U(2)$ L m_{s} is not an expansion parameter
$\Rightarrow F, B$ do depend on m_{s}

$$
F_{0}=\left.F\right|_{m_{s} \rightarrow 0} \quad B_{0}=\left.B\right|_{m_{s} \rightarrow 0}
$$

- Next-to-leading order:

$$
\begin{aligned}
\mathcal{L}^{(4)} & =L_{1}\left\langle D_{\mu} U D^{\mu} U^{\dagger}\right\rangle^{2}+L_{2}\left\langle D_{\mu} U D_{\nu} U^{\dagger}\right\rangle\left\langle D^{\mu} U D \nu U^{\dagger}\right\rangle \\
& +L_{3}\left\langle D_{\mu} U D^{\mu} U^{\dagger} D_{\nu} U D^{\nu} U^{\dagger}\right\rangle+L_{4}\left\langle D_{\mu} U D^{\mu} U^{\dagger}\right\rangle\left\langle\chi U^{\dagger}+U \chi^{\dagger}\right\rangle \\
& +L_{5}\left\langle D_{\mu} U D^{\mu} U^{\dagger}\left(\chi U^{\dagger}+U \chi^{\dagger}\right)\right\rangle+L_{6}\left\langle\chi U^{\dagger}+U \chi^{\dagger}\right)^{2} \\
& +L_{7}\left\langle\chi U^{\dagger}-U \chi^{\dagger}\right)^{2}+L_{8}\left\langle\chi U^{\dagger} \chi U^{\dagger}+U \chi^{\dagger} U \chi^{\dagger}\right\rangle \\
& -i L_{9}\left\langle F_{\mu \nu}^{\mathrm{R}} D^{\mu} U D^{\nu} U^{\dagger}+F_{\mu \nu}^{\mathrm{L}} D^{\mu} U^{\dagger} D^{\nu} U\right\rangle+L_{10}\left\langle F_{\mu \nu}^{\mathrm{R}} U F^{\mu \nu L} U^{\dagger}\right\rangle \\
& +H_{1}\left\langle F_{\mu \nu}^{\mathrm{R}} F^{\mu \nu \mathrm{R}}+F_{\mu \nu}^{\mathrm{L}} F^{\mu \nu L}\right\rangle+H_{2}\left\langle\chi \chi^{\dagger}\right\rangle
\end{aligned}
$$

10 LEC +2 CT: $L_{1}, \ldots, L_{10} ; H_{1}, H_{2}$
$\Rightarrow m_{u}, m_{d}, m_{s}, F_{0}, B_{0}, L_{4}, L_{5}, L_{6}, L_{7}, L_{8}$ determine $M_{\pi^{ \pm}}, M_{\pi^{0}}, M_{K^{ \pm}}, M_{K^{0}}, M_{\bar{K}^{0}}, M_{\eta}, F_{\pi^{ \pm}}, F_{\pi^{0}}, F_{K^{ \pm}}, F_{K^{0}}, F_{\bar{K}^{0}}, F_{\eta}$ to NLO

- compare $\operatorname{SU}(2) \times S U(2)$:

7 LEC + 3 CT: $\ell_{1}, \ldots, \ell_{7} ; h_{1}, h_{2}, h_{3}$
$\Rightarrow m_{u}, m_{d}, F, B, \ell_{3}, \ell_{4}, \ell_{7}$ determine
$M_{\pi^{ \pm}}, M_{\pi^{0}}, F_{\pi^{ \pm}}, F_{\pi^{0}}$ to NLO

19.2 Results for $L_{4}, L_{5}, L_{6}, L_{8}$

Numerical values shown refer to running scale $\mu=M_{\rho}$
\Rightarrow For PACS-CS, only the statistical errors are indicated

- The crude estimates given in 1985 for the LEC relevant at NLO are confirmed
- However: not all of the lattice data on the quark mass dependence of $M_{\pi}, M_{K}, F_{\pi}, F_{K}$ are well described by the χ PT formulae
- m_{s} is not very small, terms of order m_{s}^{2} yield sizable corrections.
- Often, m_{s} is taken in the vicinity of the physical value while $m_{u d}$ is significantly larger than the physical value
$\Rightarrow M_{K}, M_{\eta}$ are larger than the physical values, may be beyond reach
- The constants relevant at NNLO are still poorly known. Often, theoretical estimates are used, obtained by saturating sum rules with resonance contributions. Those constants that govern the dependence on the quark masses, however, represent integrals over scalar spectral functions. Scalar meson dominance does not work!
\Rightarrow Theoretical estimates can at best indicate the order of magnitude.
- The lattice approach is the ideal method for the determination of the LEC !
- Please do not use 'theory' for the LEC.

20. Zweig rule

- Concerns the role played by the sea quarks in physical matrix elements.

Okubo 1963, Zweig 1964, Iizuka 1966

- Leading low energy constants in the effective Lagrangian of $\operatorname{SU}(2) \times \mathrm{SU}(2): F$ and B

$$
\left.\left.\{F, B, \Sigma\}=\left\{F_{\pi}, \frac{M_{\pi}^{2}}{m_{u}+m_{d}},|\langle 0| \bar{u} u| 0\right\rangle \right\rvert\,\right\}_{m_{u}, m_{d} \rightarrow 0}
$$

- Low energy theorem: $\Sigma=F^{2} B$ exact, holds for any value of m_{s}.
- Zweig rule: F and B are independent of m_{s}.
- F_{0}, B_{0}, Σ_{0} : values for $m_{s}=0$
- Paramagnetic inequalities: both F and Σ decrease if m_{s} is taken smaller
$F>F_{0}, \Sigma>\Sigma_{0}$ Descotes-Genon, Girlanda \& Stern 2000
- Behaviour if N_{c} becomes large:
F, B, Σ become independent of m_{s} if $N_{c} \rightarrow \infty$ $F / F_{0} \rightarrow 1, B / B_{0} \rightarrow 1, \Sigma / \Sigma_{0} \rightarrow 1$
\Rightarrow The differences $F / F_{0}-1, B / B_{0}-1, \Sigma / \Sigma_{0}-1$ measure the violations of the Zweig rule
- Expansion to NLO involves the low energy constants L_{4} and L_{6} of the $\mathrm{SU}(3) \times \mathrm{SU}(3)$ Lagrangian:

$$
\begin{aligned}
F / F_{0} & =1+\frac{8 \bar{M}_{K}^{2}}{F_{0}^{2}} L_{4}+\chi \log +\ldots \\
\Sigma / \Sigma_{0} & =1+\frac{32 \bar{M}_{K}^{2}}{F_{0}^{2}} L_{6}+\chi \log +\ldots \\
B / B_{0} & =1+\frac{16 \bar{M}_{K}^{2}}{F_{0}^{2}}\left(2 L_{6}-L_{4}\right)+\chi \log +\ldots \\
\bar{M}_{K}^{2} & \equiv m_{s} B_{0}
\end{aligned}
$$

\Rightarrow The LEC L_{4} and L_{6} measure the deviations from the Zweig rule

- The LEC appear to obey the Zweig-rule reasonably well: the values for $L_{4}, L_{6}, 2 L_{6}-L_{4}$ are consistent with zero
- Lattice data leave much to be desired: only two papers without red tags in FLAG review: MILC (2009), HPQCD (2013).
- Inserting the lattice results for L_{4}, L_{6} in the NLO formulae of $\chi \mathrm{PT}$, I get

	F / F_{0}	B / B_{0}	Σ / Σ_{0}
MILC (2009)	$1.12(4)$	$1.10(7)$	$1.34(13)$
HPQCD (2013)	$1.10(8)$	$1.12(8)$	$1.32(28)$
GL (1985)	$1.0(1)$	$1.0(2)$	$1.0(3)$

\Rightarrow Evidence for small Zweig rule violations, consistent with the crude old estimates.

The Zweig rule violations roughly amount to a common change in scale:

$$
F \simeq Z F_{0} \quad B \simeq Z B_{0} \quad \Rightarrow \quad \Sigma \simeq Z^{3} \Sigma_{0}
$$

with $\quad Z \simeq 1.10$ (5)

- Paramagnetic inequalities of Descotes-Genon, Girlanda \& Stern are confirmed.
- MILC has evaluated the ratios to all orders in m_{s} :

	F / F_{0}	B / B_{0}	Σ / Σ_{0}
NLO	$1.12(4)$	$1.10(7)$	$1.34(13)$
all orders	$1.10(4)$	$1.20(7)$	$1.48(16)$

For F / F_{0}, the corrections are small, but for B / B_{0}, the central values of the terms of order m_{s} and m_{s}^{2} (or higher) are of the same size ...
\Rightarrow The Zweig rule deserves more attention !

- HPQCD instead evaluated the quark condensates at the physical quark masses:

$$
\frac{\langle 0| \bar{s} s|0\rangle}{\langle 0| \bar{u} u|0\rangle}=1.08(16)(1)
$$

Confirms that $\operatorname{SU}(3)$ is a decent approximate symmetry: the symmetry breaking generated by $m_{s}-m_{u d}$ is too small to stick out from the noise of the calculation.

21. Quark mass ratios

21.1 Isospin breaking

- The symmetry properties of the vacuum shield the pions from isospin breaking:

The difference between m_{u} and m_{d} only generates a tiny effect of order

$$
M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2} \propto\left(m_{u}-m_{d}\right)^{2} .
$$

\Rightarrow The mass difference between π^{0} and π^{+}is due almost exclusively to electromagnetism.
\Rightarrow More easy to determine the mean mass $m_{u d} \equiv \frac{1}{2}\left(m_{u}+m_{d}\right)$ than the difference $m_{u}-m_{d}$.

- Estimate the e.m. self-energies with the Dashen theorem:

$$
\left.M_{K^{+}}^{2}\right|_{e . m .}=\left.M_{\pi^{2}+\left.\right|_{e . m .} ^{2}}^{2} \quad M_{\pi^{0}}^{2}\right|_{e . m .}=\left.M_{K^{0}}^{2}\right|_{e . m .}=0
$$

21.2 Quark mass ratios at leading order

- Solve the tree level mass formulae for the ratios $m_{s} / m_{u d}$ and m_{u} / m_{d} : Weinberg 1977

$$
\begin{aligned}
\frac{m_{s}}{m_{u d}} & =\frac{M_{K^{+}}^{2}+M_{K^{0}}^{2}-M_{\pi^{+}}^{2}}{M_{\pi^{0}}^{2}}=25.9 \\
\frac{m_{u}}{m_{d}} & =\frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}+2 M_{\pi^{0}}^{2}-M_{\pi^{+}}^{2}}{M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}}=0.56
\end{aligned}
$$

- Low energy theorems, valid to leading order of the chiral expansion.

Corrections from higher orders ? Could they strongly modify the numerical result ?

What is the uncertainty to be attached to these predictions ?

21.3 Lattice results for $m_{s} / m_{u d}$

lattice average quoted in FLAG 2013:

$$
\begin{aligned}
\frac{m_{s}}{m_{u d}}= & 27.46(15)(41) \\
& 27.46=\underset{\Uparrow}{25.9}+\underset{\Uparrow}{1.6}
\end{aligned}
$$

leading order
higher orders
\Rightarrow correction is small, leading term of chiral perturbation series dominates
accuracy reached: 1.6 \%
$21.4 m_{s} / m_{d}$ versus m_{u} / m_{d}

- Most lattice calculations are done in pure QCD.
- For $m_{s} / m_{u d}$, this is a good approxiation, because the uncertainties in the violations of the Dashen theorem do not strongly affect this ratio.
- For m_{u} / m_{d}, the situation is different. Lattice simulations of QCD + QED cannot be done with the same level of confidence as for QCD alone: not all systematic errors are under control (quenched photons, finite size effects for interactions of long range).

21.5 Low energy theorem valid to NLO

- The lattice result for $m_{s} / m_{u d}$ determines the size of the correction in the relation

$$
\frac{M_{K}^{2}}{M_{\pi}^{2}}=\frac{m_{s}+m_{u d}}{m_{u}+m_{d}}\left\{1+\Delta_{M}\right\}
$$

$m_{s} / m_{u d}=27.5 \pm 0.4 \Rightarrow \Delta_{M}=-0.057 \pm 0.013$.

- Remarkably, chiral symmetry implies that the correction of NLO in the ratio of mass splittings is the same:

$$
\frac{M_{K^{0}}^{2}-M_{K^{+}}^{2}}{M_{K}^{2}-M_{\pi}^{2}}=\frac{m_{d}-m_{u}}{m_{s}-m_{u d}}\left\{1+\Delta_{M}+O\left(\mathcal{M}^{2}\right)\right\}
$$

Hence the quark mass ratio

$$
Q^{2} \equiv \frac{m_{s}^{2}-m_{u d}^{2}}{m_{d}^{2}-m_{u}^{2}}
$$

is given by a ratio of meson masses, up to corrections of NNLO:
$Q^{2}=\frac{M_{K}^{2}-M_{\pi}^{2}}{M_{K^{0}}^{2}-M_{K^{+}}^{2}} \cdot \frac{M_{K}^{2}}{M_{\pi}^{2}}\left\{1+O\left(\mathcal{M}^{2}\right)\right\}$

21.6 Consequences for Q

- Insert Weinberg's leading order ratios
$\Rightarrow Q=24.3$.
- Q^{2} is a ratio of quark mass squares
\Rightarrow a given value of Q imposes a homogeneous quadratic constraint on m_{u}, m_{d}, m_{s}
\Rightarrow represents an ellipse in the plane of the quark mass ratios:

- Critical input here is the "Dashen theorem": Weinberg's estimates for the quark mass ratios account for QED only to LO.

22. The decay $\eta \rightarrow 3 \pi$

- The decay $\eta \rightarrow 3 \pi$ provides a better handle on Q than the mass splitting between K^{+}and K^{0}, because the e.m. interaction is suppressed (Sutherland's theorem).
- For $e=0$ and $m_{u}=m_{d}$, isospin is conserved, hence G-parity is conserved.

In this limit, the η is a stable particle:
$G_{\eta}=1, G_{\pi}=-1$.
\Rightarrow Since the e.m. contributions are tiny, the transition amplitude is to a very good approximation proportional to ($m_{u}-m_{d}$).

22.1 Tree level

- Parameter free prediction for the leading term of the chiral perturbation series:

$$
A\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=-\frac{\sqrt{3}}{4} \cdot \frac{m_{d}-m_{u}}{m_{s}-m_{u d}} \cdot \frac{s-\frac{4}{3} M_{\pi}^{2}}{F_{\pi}^{2}}
$$

- Compare leading term in the chiral expansion of the $\pi \pi$ scattering amplitude:

$$
A(\pi \pi \rightarrow \pi \pi)=\frac{s-M_{\pi}^{2}}{F_{\pi}^{2}}
$$

- In both cases, the leading term is linear in s and contains an Adler zero

$$
\begin{array}{ll}
\pi \pi \text { scattering } & \eta \text { decay } \\
s_{A}=M_{\pi}^{2} & s_{A}=\frac{4}{3} M_{\pi}^{2}
\end{array}
$$

- The analytic structure of the two amplitudes is very similar.
- In both cases, the higher order contributions of the chiral perturbation series are dominated by the final state interaction among the pions.

22.2 One loop

- Most remarkable property of the one loop representation: expressed in terms of F_{π}, F_{K}, M_{π}, M_{K}, M_{η}, Q, all LEC except L_{3} drop out.

Gasser \& L. 1985

$$
A\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=-\frac{1}{Q^{2}} \cdot \frac{M_{K}^{2}\left(M_{K}^{2}-M_{\pi}^{2}\right)}{3 \sqrt{3} M_{\pi}^{2} F_{\pi}^{2}} \cdot M(s, t, u)
$$

- Moreover, L_{3} concerns the momentum dependence of the amplitude, can be determined quite well from $\pi \pi$ scattering.
\Rightarrow At one loop, the result for the rate is of the form

$$
\Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}=\frac{C}{Q^{4}} \quad Q^{2} \equiv \frac{m_{s}^{2}-m_{u d}^{2}}{m_{d}^{2}-m_{u}^{2}}
$$

where C is a known constant $\Rightarrow Q$ can be determined from the observed rate.

- The main problem is not the uncertainty in L_{3}, but the contributions from higher orders.
- In 1985, we estimated the uncertainty in the result for Q at

$$
\frac{1}{Q^{2}}=(1.9 \pm 0.3) \cdot 10^{-3} \leftrightarrow \quad Q=22.9_{-1.6}^{+2.1}
$$

- The result is consistent with the value $Q=$ 24.3 obtained from the kaon mass difference with the Dashen theorem, but the uncertainties are large.

22.3 Dispersion theory

- The structure of the decay amplitude is governed by the final state interaction.

Standard method for the analysis of this interaction: dispersion theory.

- Main difference to $\pi \pi$ scattering: the subtraction constants relevant for $\eta \rightarrow 3 \pi$ cannot be predicted to the same precision.
- Can analyze $\pi \pi$ scattering by treating only m_{u} and m_{d} as small: $\mathrm{SU}(2) \times \mathrm{SU}(2)$
- In η decay, need to treat m_{s} as an expansion parameter as well: $\operatorname{SU}(3) \times \operatorname{SU}(3)$
- Only the occurrence of an Adler zero follows from $\operatorname{SU}(2) \times S U(2)$ symmetry alone.
- The subtraction constants can be estimated by comparing the dispersive and chiral representations at small values of s, t or u and requiring the occurrence of an Adler zero at the proper place.

Anisovich \& L. 1996
\Rightarrow Final state interaction amplifies the transition.

- Effect of the higher order contributions on the result for Q is modest:
$Q=22.4 \pm 0.9$
Kambor, Wiesendanger \& Wyler 1996
$Q=22.7 \pm 0.8$
Anisovich \& L. 1996
- Confirmed the one loop result, $Q=22.9_{-1.6}^{+2.1}$, uncertainty reduced by a factor of 2 .
22.4 Recent work on $\eta \rightarrow 3 \pi$
- In the meantime, the experimental situation improved a lot: KLOE, MAMI, WASA.
- At low energies, the $\pi \pi$ phase shifts are now known to remarkable accuray:
- Low energy precision experiments (E865, NA48, DIRAC).
- Low energy theorems for scattering lengths.
- Dispersion theory (Roy equations).
- χ PT has been worked out to NNLO.

Bijnens \& Ghorbani 2007

- At the precision reached, isospin breaking needs to be accounted for. Ditsche, Kubis \& Meissner 2009
- Nonrelativistic effective theory.

Gullström, Kupsc \& Rusetsky 2009
Schneider, Kubis \& Ditsche 2011

- Improved dispersive analysis is under way

Colangelo, Lanz, L. \& Passemar

- Preliminary results for the quark mass ratios

- Intersection moves to values of m_{u} / m_{d} and m_{s} / m_{d} that are somewhat smaller than those obtained with the LO mass formulae of Weinberg.

- The preliminary results for the ratio m_{u} / m_{d} are consistent with the lattice averages quoted by FLAG, but tend to be somewhat smaller.

22. Conclusions for $\mathbf{S U (3)} \times \mathbf{S U (3)}$

- Expansion in powers of m_{s} appears to work:

In all cases I know, where the calculation is under control, the truncation at low order yields a decent approximation
\Rightarrow The picture looks coherent, also for $\operatorname{SU}(3) \times \operatorname{SU}(3)$

- $m_{s} \gg m_{u}, m_{d} \Rightarrow$ higher orders more important
- For many observables \exists representation to NNLO
- Main problem: new LEC relevant at NNLO
- \exists estimates based on resonance models
- Vector meson dominance
- Dependence on m_{u}, m_{d}, m_{s} : scalar resonances
- Scalar meson dominance ?
- Lattice results now start providing more precise values for the LEC, but the settling of dust is a slow process ...

23. QCD at nonzero temperature

- Most likely distribution of a given energy: thermal equilibrium, characterized by \top
- Partition function: $Z=\operatorname{Tr} e^{-\frac{H}{T}}$
23.1 Magnets
$H=H_{0}-\int d^{3} x \vec{H} \cdot \vec{M}$
\vec{H} : external magnetic field
\vec{M} : magnetization
- Expectation value of magnetization:
$\langle\vec{M}\rangle=\frac{1}{Z} \operatorname{Tr}\left\{e^{-\frac{H}{T}} \vec{M}\right\}$
- $\langle\vec{M}\rangle$ is parallel to \vec{H}
- Spontaneous magnetization:
$\langle\vec{M}\rangle$ stays $\neq 0$ if $\vec{H} \rightarrow 0$

Temperature dependence of spontaneous magnetization
23.2 QCD

$$
H=H_{0}+\int d^{3} x\left\{m_{u} \bar{u} u+m_{d} \bar{d} d\right\}
$$

- Partition function: $Z=\operatorname{Tr} e^{-\frac{H}{T}}$
- Quark condensate at nonzero temperature:

$$
\langle\bar{u} u\rangle=\frac{1}{Z} \operatorname{Tr}\left\{e^{-\frac{H}{T}} \bar{u} u\right\}
$$

- For $T \rightarrow 0,\langle\bar{u} u\rangle$ tends to $\langle 0| \bar{u} u|0\rangle$

Temperature dependence of quark condensate

- Symmetry relevant here: $\operatorname{SU}(2)_{R} \times S U(2)\llcorner$

Symmetry is exact only for $m_{u}, m_{d} \rightarrow 0$

23.3 Partition function of QCD at low T

- Insert complete set of states $H|n\rangle=E_{n}|n\rangle$

$$
Z=\operatorname{Tr} e^{-\frac{H}{T}}=\sum_{n} e^{-\frac{E_{n}}{T}}
$$

- Only states with $E_{n} \lesssim T$ contribute

At $\mathrm{T}=0$ only the vacuum survives, $|n\rangle=|0\rangle$

- At low T, the next most important contribution stems from the pions
- Pions of low energy behave like free particles, only interact weakly
\Rightarrow At low energies, the partition function of QCD describes a gas of free pions

23.4 Partition function of free Bose gas

Bose 1924, Einstein 1925

- Complete set of one particle modes
- Label the modes with $k=1,2,3, \ldots$
- Example: box of size $L \times L \times L$, plane waves

$$
\begin{aligned}
& \vec{p}=\frac{2 \pi}{L}\left\{k_{1}, k_{2}, k_{3}\right\}, k_{r} \in Z \\
& k \leftrightarrow\left\{k_{1}, k_{2}, k_{3}\right\}
\end{aligned}
$$

- bosons: $n_{k}=0,1,2, \ldots$ particles in each mode fermions: $n_{k}=0$ or 1
\Rightarrow Complete set of states for the entire gas:
$|n\rangle=\left|n_{1}, n_{2}, \ldots\right\rangle$
- Energy in mode $k: \omega_{k}=\sqrt{m^{2}+\vec{p}^{2}}$
- Energy of the gas in such a state

$$
\begin{aligned}
& E_{n}=E_{0}+n_{1} \omega_{1}+n_{2} \omega_{2}+\ldots \\
& \Uparrow \text { vacuum energy }
\end{aligned}
$$

$$
\begin{aligned}
& Z=\sum_{n_{1}, n_{2}, \ldots} e^{-\frac{1}{T}\left\{E_{0}+n_{1} \omega_{1}+n_{2} \omega_{2}+\ldots\right\}} \\
& =\sum_{n_{1}, n_{2}, \ldots} e^{-\frac{E_{0}}{T}} \times e^{-\frac{n_{1} \omega_{1}}{T}} \times e^{-\frac{n_{2} \omega_{2}}{T}} \ldots \\
& =e^{-\frac{E_{0}}{T}} \times \frac{1}{1-e^{-\frac{\omega_{1}}{T}}} \times \frac{1}{1-e^{-\frac{\omega_{2}}{T}}} \cdots \\
& =e^{-\frac{E_{0}}{T}} \times \prod_{k} \frac{1}{1-e^{-\frac{\omega_{k}}{T}}} \\
& \ln Z=-\frac{E_{0}}{T}-\sum_{k} \ln \left(1-e^{-\frac{\omega_{k}}{T}}\right)
\end{aligned}
$$

- Number of states in $\Delta^{3} p: \quad \frac{\Delta^{3} p}{(2 \pi / L)^{3}}=\frac{\Delta^{3} p V}{(2 \pi)^{3}}$

This reproduces a general rule of statistical mechanics: the volume element $\Delta^{3} p \Delta^{3} x$ of phase space contains $\Delta^{3} p \Delta^{3} x / h^{3}$ quantum states

$$
\Rightarrow \ln Z=-\frac{E_{0}}{T}-\frac{V}{(2 \pi)^{3}} \int d^{3} p \ln \left(1-e^{-\frac{\omega_{\vec{~}}}{T}}\right)
$$

23.5 Melting of the condensate

- QCD with two light flavours: 3 NGBs

$$
\ln Z_{\mathrm{QCD}}=-\frac{E_{0}}{T}-3 \frac{V}{(2 \pi)^{3}} \int d^{3} p \ln \left(1-e^{-\frac{\omega_{\vec{\rightharpoonup}}}{T}}\right)+\ldots
$$

- Calculate the condensate from the partition function
$\frac{\partial Z_{\mathrm{QCD}}}{\partial m_{u}}=\frac{\partial \operatorname{Tr} e^{-\frac{H}{T}}}{\partial m_{u}}=-\frac{1}{T} \operatorname{Tr}\left\{e^{-\frac{H}{T}} \frac{\partial H}{\partial m_{u}}\right\}$
$H=H_{0}+\int d^{3} x\left\{m_{u} \bar{u} u+m_{d} \bar{d} d\right\}$
$\frac{\partial H}{\partial m_{u}}=\int d^{3} x \bar{u} u$
$\frac{\partial Z_{\mathrm{QCD}}}{\partial m_{u}}=-\frac{1}{T} \int d^{3} x \operatorname{Tr}\left\{e^{-\frac{H}{T}} \bar{u} u\right\}=-\frac{V}{T} \operatorname{Tr}\left\{e^{-\frac{H}{T}} \bar{u} u\right\}$

$$
=-\frac{V}{T}\langle\bar{u} u\rangle Z_{\mathrm{QCD}}
$$

$\Rightarrow\langle\bar{u} u\rangle=-\frac{T}{V} \frac{\partial \ln Z_{\mathrm{QCD}}}{\partial m_{u}}$

$$
\ln Z_{\mathrm{QCD}}=-\frac{E_{0}}{T}-3 \frac{V}{(2 \pi)^{3}} \int d^{3} p \ln \left(1-e^{-\frac{\omega_{\vec{\rightharpoonup}}}{T}}\right)
$$

- First term dominates at low T:
$\langle\bar{u} u\rangle=\frac{1}{V} \frac{\partial E_{0}}{\partial m_{u}}+\ldots$ independent of T

$$
\frac{1}{V} \frac{\partial E_{0}}{\partial m_{u}}=\langle 0| \bar{u} u|0\rangle
$$

- Second term also depends on m_{u}, via

$$
\omega_{\vec{p}}=\sqrt{M_{\pi}^{2}+\vec{p}^{2}} \quad M_{\pi}^{2}=\left(m_{u}+m_{d}\right) B+\ldots
$$

$\Rightarrow \frac{\partial \omega_{\vec{p}}}{\partial m_{u}}=\frac{B}{2 \omega_{\vec{p}}}=-\frac{\langle 0| \bar{u} u|0\rangle}{2 \omega_{\vec{p}} F^{2}}$
$\langle\bar{u} u\rangle=\langle 0| \bar{u} u|0\rangle\left\{1-\frac{3}{16 \pi^{3} F^{2}} \int \frac{d^{3} p}{\omega_{\vec{p}}} \frac{1}{\left(e^{\frac{\omega_{\vec{p}}}{T}}-1\right)}+\ldots\right\}$
$\Rightarrow\langle\bar{u} u\rangle<\langle 0| \bar{u} u|0\rangle$ quark condensate melts

- Melting for massless quarks:

$$
m_{u}, m_{d} \rightarrow 0 \Rightarrow M_{\pi}=0 \Rightarrow \omega_{\vec{p}}=|\vec{p}|
$$

$\int \frac{d^{3} p}{|\vec{p}|} \frac{1}{\left(e^{\frac{\mid \vec{p}}{T}}-1\right)}=\frac{2 \pi^{3} T^{2}}{3}$
$\Rightarrow \quad\langle\bar{u} u\rangle=\langle 0| \bar{u} u|0\rangle\left\{1-\frac{T^{2}}{8 F^{2}}+O\left(T^{4}\right)\right\}$
First two terms in temperature expansion of the quark condensate for $m_{u}=m_{d}=0$. The constant F is the value of F_{π} in this limit.

Binétruy \& Gaillard 1985

23.6 Pressure, energy density

- Free energy: $Z_{\mathrm{QCD}}=e^{-\frac{F_{\mathrm{QCD}}}{T}}$

$$
F_{\mathrm{QCD}}=E_{0}+\frac{3 V T}{(2 \pi)^{3}} \int d^{3} p \ell n\left(1-e^{-\frac{\omega_{\vec{P}}}{T}}\right)+\ldots
$$

Free energy of noninteracting Bose gas 3 flavours: $\pi^{-}, \pi^{0}, \pi^{+}$

- Massless pions: $\int d^{3} p \ln \left(1-e^{-\frac{|\vec{p}|}{T}}\right)=-\frac{4 \pi^{5}}{45} T^{3}$
$\Rightarrow F_{\mathrm{QCD}}=E_{0}-\frac{\pi^{2}}{30} V T^{4}+O\left(T^{6}\right)$
- $P_{\mathrm{QCD}}=-\frac{\partial F_{\mathrm{QCD}}}{\partial V}=\frac{\pi^{2}}{30} T^{4}+O\left(T^{6}\right)$ pressure
- $s_{\mathrm{QCD}}=\frac{\partial P_{\mathrm{QCD}}}{\partial T}=\frac{2 \pi^{2}}{15} T^{3}+O\left(T^{5}\right) \begin{gathered}\text { entropy } \\ \text { density }\end{gathered}$
- $u_{\mathrm{QCD}}=T s-P=\frac{\pi^{2}}{10} T^{4}+O\left(T^{6}\right)$ energy density
\Rightarrow Leading terms in massless QCD are the same as for black body radiation, except for a factor 3/2 (3 independent pion states of a given momentum, 2 independent photon states)

23.7 Comparison: high temperature

- Asymptotic freedom \Rightarrow at high temperature, QCD also represents a gas of free particles: quarks, gluons
- High temperatures are beyond reach of χ PT Instead: perturbation theory in powers of α_{s}
- Gas of free gluons: energy density, pressure, differ from the expressions obtained for a gas of free pions only by the factor $\frac{2 \times 8}{3}$
- Quarks are fermions, obey different statistics
- Partition function of free fermions

$$
Z=\sum_{n_{1}, n_{2}, \ldots} e^{-\frac{E_{0}}{T}} \times e^{-\frac{n_{1} \omega_{1}}{T}} \times e^{-\frac{n_{2} \omega_{2}}{T}} \ldots
$$

$$
Z=e^{-\frac{E_{0}}{T}} \times\left(1+e^{-\frac{\omega_{1}}{T}}\right) \times\left(1+e^{-\frac{\omega_{2}}{T}}\right) \ldots
$$

$$
=e^{-\frac{E_{0}}{T}} \times \prod_{k}\left(1+e^{-\frac{\omega_{k}}{T}}\right)
$$

$$
\ln Z=-\frac{E_{0}}{T}+\sum_{k} \ln \left(1+e^{-\frac{\omega_{k}}{T}}\right)
$$

$\Rightarrow \ln Z=-\frac{E_{0}}{T}+\frac{V}{(2 \pi)^{3}} \int d^{3} p \ln \left(1+e^{-\frac{\omega_{\vec{p}}}{T}}\right)$
$\Rightarrow F=E_{0}-\frac{V T}{(2 \pi)^{3}} \int d^{3} p \ln \left(1+e^{-\frac{\omega_{\vec{p}}}{T}}\right)$
Free energy of noninteracting fermions

$$
\omega_{\vec{p}}=\sqrt{m^{2}+\vec{p}^{2}}
$$

- Massless quarks: $\omega_{\vec{p}}=|\vec{p}|$

$$
\int d^{3} p \ln \left(1+e^{-\frac{|\vec{p}|}{T}}\right)=\frac{7 \pi^{5}}{90} T^{3}
$$

$\Rightarrow F_{\text {quarks }}=E_{0}-3 \cdot 2 \cdot 2 \cdot N_{f} \frac{7 \pi^{2}}{720} T^{4} V$

- Net result for energy density of QCD with N_{f} massless quarks
- High temperature:

$$
u_{\mathrm{QCD}}=\frac{\pi^{2}}{30} T^{4} \underset{\left.\substack{\Uparrow \\ \text { gluons }} \underset{\Uparrow}{8 \cdot 2}+\frac{7}{8} \cdot 3 \cdot \underset{\uparrow}{2} \cdot 2 \cdot N_{f}\right\}}{\text { quarks }}
$$

- Low temperature:

$$
u_{\mathrm{QCD}}=\frac{\pi^{2}}{30} T^{4} \cdot\left(N_{\uparrow}^{2}-1\right)+\ldots
$$

Nambu-Goldstone Bosons

- Contributions from other particles at low T:
$\sim e^{-M_{\rho} / T} \simeq 0.006$ for $\simeq 150 \mathrm{MeV}$
- Probability to find a ρ is small, but:
many statistically independent states
\Rightarrow Already at $\top=130 \mathrm{MeV}$, more energy is stored in $K, \eta, \rho \ldots$ than in the pions
- Return to the quark condensate at low T QCD with N_{f} massless quark flavours

$$
\langle\bar{u} u\rangle=\langle 0| \bar{u} u|0\rangle\left\{1-\frac{\left(N_{f}^{2}-1\right)}{12 N_{f}} \frac{T^{2}}{F^{2}}+O\left(T^{4}\right)\right\}
$$

- Term of order T^{4} ? Very tedious to do the calculation by hand, use the washing machine:
23.8 Chiral Perturbation Theory for $\boldsymbol{T} \neq 0$
- Standard procedure:
- Path integral representation for the transition amplitude in quantum mechanics
$\left\langle x^{\prime}\right| e^{-i t H}|x\rangle=\int[D x] e^{i \int_{0}^{t} d t^{\prime} L}$
Integration extends over all paths $x(t)$ with $x(0)=x, x(t)=x^{\prime}$
- Path integral representation for the matrix elements of $e^{-\beta H}$: continue analytically in t to $t=-i \beta$
$\left\langle x^{\prime}\right| e^{-\beta H}|x\rangle=\int[D x] e^{-\int_{0}^{\beta} d t^{\prime} L^{e u c l}}$
- Partition function in this notation:

$$
\operatorname{Tr} e^{-\beta H}=\int d x\langle x| e^{-\beta H}|x\rangle \text { with } \beta=\frac{1}{T}
$$

\Rightarrow Set $x^{\prime}=x$ and integrate over x

$$
\operatorname{Tr} e^{-\beta H}=\int[D x] e^{-\int_{0}^{\beta} d t^{\prime} L^{e u c l}}
$$

Integration over all paths with $x(\beta)=x(0)$

- Formula also holds for path integral representation of QCD:
$\operatorname{Tr} e^{-\beta H}=\mathcal{N} \int[d G] e^{-\int_{0}^{\beta} d x^{4} \int d^{3} x \mathcal{L}_{\mathrm{G}}^{e u c l}} \operatorname{det} D$
as well as for the effective theory:

$$
\operatorname{Tr} e^{-\beta H}=\mathcal{N}_{e f f} \int[d U] e^{-\int_{0}^{\beta} d x^{4} \int d^{3} x \mathcal{L}_{\text {eff }}^{e u c l}\{U, v, a, s, p, \theta\}}
$$

Integration extends over all periodic fields:

 $U(\vec{x}, \beta)=U(\vec{x}, 0)$- Vertices in the effective Lagrangian remain the same: LEC and CT are independent of T

Massless quarks

- Consider QCD with $N_{f} \geq 2$ massless flavours $\Rightarrow \exists N_{f}^{2}-1$ massless Nambu-Goldstone-bosons
- χ PT provides expansion in powers of T:

$$
\left.\begin{array}{cc}
\langle\bar{u} u\rangle=\langle 0| \bar{u} u|0\rangle\left\{1-c_{1} \frac{T^{2}}{F_{\pi}^{2}}-c_{2} \frac{T^{4}}{F_{\pi}^{4}}-\right. \\
\left.-c_{3} \frac{T^{6}}{F_{\pi}^{6}} \ln \frac{\Lambda_{q}}{T}+O\left(T^{8}\right)\right\}
\end{array}\right\} \begin{array}{ll}
c_{1}=\frac{N_{f}^{2}-1}{12 N_{f}} & \text { Ginétruy \& Gaillard } 1985 \\
c_{2}=\frac{N_{f}^{2}-1}{288 N_{f}^{2}} & \text { Gasser \& L. } 1987 \\
c_{3}=\frac{N_{f}\left(N_{f}^{2}-1\right)}{1728} & \text { Gerber \& L. } 1989
\end{array}
$$

- Result is exact: the condensate of massless QCD admits a Taylor series expansion in T. The first few coefficients are determined by the value of F_{π} in massless QCD.
- At order T^{3}, there is a chiral logarithm; the scale thereof is fixed by the LEC of NLO.

D. Partition function of a free gas

$$
Z=\operatorname{Tr} e^{-\frac{H}{T}}
$$

- Insert complete set of states $H|n\rangle=E_{n}|n\rangle$
- Complete set of one particle modes
- Label the modes with $k=1,2,3, \ldots$
- Example: box of size $L \times L \times L$, plane waves

$$
\begin{aligned}
& \vec{p}=\frac{2 \pi}{L}\left\{k_{1}, k_{2}, k_{3}\right\}, k_{r} \in Z \\
& k \leftrightarrow\left\{k_{1}, k_{2}, k_{3}\right\}
\end{aligned}
$$

- bosons: $n_{k}=0,1,2, \ldots$ particles in each mode fermions: $n_{k}=0$ or 1
\Rightarrow Complete set of states for the entire gas: $|n\rangle=\left|n_{1}, n_{2}, \ldots\right\rangle$
- Energy in mode $k: \omega_{k}=\sqrt{m^{2}+\vec{p}^{2}}$
- Energy of the gas in such a state

$$
\begin{gathered}
E_{n}=\underset{\Uparrow}{E_{0}+n_{1} \omega_{1}+n_{2} \omega_{2}+\ldots}+\ldots \text { vacuum energy }
\end{gathered}
$$

IV. Some recent results

21. Masses of the light quarks

- χ PT plays an important role in the analysis of lattice data: describes the dependence of the various observables on the quark masses and on the size of the box in terms of a few LEC

$$
\begin{array}{ll}
m_{s}(2 \mathrm{GeV})=99 \pm 11 \mathrm{MeV} & \text { FLAG } 2010 \\
& (\text { preliminary })
\end{array}
$$

Summary in FLAG 2013:

N_{f}	$m_{u d}$	m_{s}	$m_{s} / m_{u d}$
$2+1$	$3.42(6)(7)$	$93.8(1.5)(1.9)$	$27.46(15)(41)$
2	$3.6(2)$	$101(3)$	$28.1(1.2)$

Isospin breaking in the quark masses:

N_{f}	m_{u}	m_{d}	m_{u} / m_{d}	Q
$2+1$	$2.16(11)$	$4.68(14)(7)$	$0.46(2)(2)$	$22.6(7)(6)$
2	$2.40(23)$	$4.80(23)$	$0.50(4)$	$24.3(1.4)(0.6)$

Results for quark mass ratios

Phenomenology

Lattice

$$
\frac{m_{s}}{m_{u d}}=27.8 \pm 1.0 \quad \frac{m_{u}}{m_{d}}=0.474 \pm 0.040
$$

FLAG 2010 (preliminary)

None of the lattice results is consistent with the "solution" $m_{u}=0$ of the strong CP problem

Comparison

22. $V_{u s}$ and $V_{u d}$

- Experimental sources for $V_{u s}$ and $V_{u d}$: superallowed nuclear β transitions

$$
\begin{gathered}
\left|V_{u d}\right| \\
\left|f_{+}(0) V_{u s}\right| \\
\left|V_{u d} F_{\pi}\right| \\
\left|V_{u s} F_{K}\right| \\
\left|V_{u s}\right|
\end{gathered}
$$

$K \rightarrow \pi \ell \nu$
$\pi \rightarrow \ell \nu, \tau \rightarrow \pi \nu$
$K \rightarrow \ell \nu, \tau \rightarrow K \nu$
inclusive τ decays

- Vector current relevant for nuclear β decay is conserved modulo $m_{u}-m_{d}$
\Rightarrow analog of $f_{+}(0)$ is very close to unity

$$
\left|V_{u d}\right|=0.97425 \pm 0.00022
$$

Hardy + Towner 2009

- Can determine $V_{u s}$ from $K \rightarrow \pi \ell \nu$ only if $f_{+}(0)$ is known. Early determinations were based on $\chi \mathrm{PT}$ prediction for that
- Lattice calculations now provide reliable and precise determination of $f_{+}(0) \Rightarrow\left|V_{u s}\right|$
- Results for F_{π}, F_{K} do not yet reach sufficient precision, but those for the ratio F_{K} / F_{π} do
$\Rightarrow \frac{V_{u s}}{V_{u d}}$ can be determined from $\frac{\Gamma(K \rightarrow \ell \nu)}{\Gamma(\pi \rightarrow \ell \nu)}$
\Rightarrow can test the Standard Model:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2} \stackrel{?}{=} 1
$$

$\left|V_{u b}\right|$ known well enough, contribution is tiny

- Testing the Standard Model with the lattice data alone

$$
\left|V_{u}\right|^{2} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1.002 \pm 0.016
$$

- Lattice results for $V_{u d}$ are consistent with the value obtained from nuclear β-decay
\Rightarrow Test sharpens if the two are combined:

$$
\begin{array}{cc}
\left|V_{u}\right|^{2}=1.0000 \pm 0.0007 & f_{+}(0)+V_{u d} \\
\left|V_{u}\right|^{2}=0.9999 \pm 0.0007 & F_{K} / F_{\pi}+V_{u d} \\
\Uparrow< & \Uparrow
\end{array}
$$

Lattice β-decay
\Rightarrow Can impose $\left|V_{u}\right|^{2}=1$ as a constraint (SM)

	$\left\|V_{u s}\right\|$	$\left\|V_{u d}\right\|$	$f_{+}(0)$	f_{K} / f_{π}
Lattice	$0.225(2)$	$0.9743(4)$	$0.960(8)$	$1.193(11)$
β decay	$0.225(1)$	$0.9743(2)$	$0.960(5)$	$1.192(6)$

FLAG review 2010 (preliminary)

Data on $\left|V_{u s}\right|$ and $\left|V_{u d}\right|$ analyzed within the SM:

- Direct determination of $\left|V_{u s}\right|$ from τ decay: Sort out the final states in the inclusive decay $\tau \rightarrow \nu+$ hadrons:
$\Gamma=\Gamma(\tau \rightarrow \nu+$ strange hadrons $)+$ rest
First term dominated by $\left|V_{u s}\right|^{2}$, rest by $\left|V_{u d}\right|^{2}$
Gamiz, Jamin, Pich, Prades, Schwab Maltman, Wolfe, Banerjee, Nugent, Roney

23. Puzzling results on $K_{L} \rightarrow \pi \mu \nu$

- Hadronic matrix element of weak current:

$$
\left\langle K^{0}\right| \bar{u} \gamma^{\mu} s\left|\pi^{-}\right\rangle=\left(p_{K}+p_{\pi}\right)^{\mu} f_{+}(t)+\left(p_{K}-p_{\pi}\right)^{\mu} f_{-}(t)
$$

- Scalar form factor $\sim\left\langle K^{0}\right| \partial_{\mu}\left(\bar{u} \gamma^{\mu} s\right)\left|\pi^{-}\right\rangle$

$$
f_{0}(t)=f_{+}(t)+\frac{t}{M_{K}^{2}-M_{\pi}^{2}} f_{-}(t)
$$

- Low energy theorem

Callan \& Treiman 1966

$$
f_{0}\left(M_{K}^{2}-M_{\pi}^{2}\right)=\frac{F_{K}}{F_{\pi}}\left\{1+O\left(m_{u}, m_{d}\right)\right\} \simeq 1.19
$$

$f_{0}(0)=f_{+}(0) \simeq 0.96$ relevant for determination of $V_{u s}$

- Comparison with experiment

NA48, Phys. Lett. B647 (2007) 341 (141 authors, 2.3×10^{6} events)

- Plot shows normalized scalar form factor

$$
\bar{f}_{0}(t)=\frac{f_{0}(t)}{f_{0}(0)}
$$

- CT relation in this normalization:

$$
\bar{f}_{0}\left(M_{K}^{2}-M_{\pi}^{2}\right)=\frac{F_{K}}{F_{\pi} f_{+}(0)}=1.2446 \pm 0.0041
$$

- Implications
- NA48 data on $K_{L} \rightarrow \pi \mu \nu$ disagree with SM
- If confirmed, the implications are dramatic:
$\Rightarrow W$ couples also to right-handed currents Bernard, Oertel, Passemar, Stern 2006
- There are not many places where the SM disagrees with observation, need to investigate these carefully
- At low energies, high precision is required

- New data from KLOE

I thank Emilie Passemar for some of the material shown in this figure

- History of the issue: data on the slope of the scalar form factor

$$
f_{0}(t)=f_{0}(0)\left\{1+\lambda_{0} t+\lambda_{0}^{\prime} t^{2}+O\left(t^{3}\right)\right\}
$$

λ_{0} in units of $10^{-3} \mathrm{M}_{\pi}^{-2}$

24. Concluding remarks

- These lectures focused on the low energy properties of the sector with zero baryon number: $N_{B}=\frac{1}{3}\left(N_{u}+N_{d}+N_{s}+N_{c}+N_{b}+N_{t}\right)=0$. Moreover, only states with $N_{c}=N_{b}=N_{t}=0$ were discussed.
- There is considerable progress in extending χ PT to the sector with $N_{B}=1$, as well as to nuclei, where $N_{B}=2,3 \ldots$
- Effective theory for heavy quark bound states
- Mesons with a heavy and a light quark
- Extension from QCD to QCD + QED
- Combine χ PT with dispersion theory Example: form factors relevant for $K \rightarrow \pi \ell \nu$ $f_{0}(t)=f_{0}(0)\left\{1+\lambda_{0} t+\lambda_{0}^{\prime} t^{2}+\ldots\right\}$ χ PT: $\lambda_{0} \leftrightarrow \mathrm{NLO}, \lambda_{0}^{\prime} \leftrightarrow \mathrm{NNLO}$

Dispersion theory implies very strong correlation between λ_{0} and λ_{0}^{\prime}

Abbas, Ananthanarayan, Caprini, Imsong 2010

- Dispersive analysis of $\pi \pi$ and πK scattering, $\eta \rightarrow 3 \pi$, ...

If time permits, I can explain how dispersion theory can be used to extend the $\chi \mathrm{PT}$ result for the $\pi \pi$ scattering lengths to a model-independent prediction for mass and width of the σ meson

