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What happened so far

Methods for Markov Chain Monte Carlo

Sequence of field configuratoins

→MC time series of measurements

Field updates are expensive→ limited statistics

Outline for today

Methods to deal with autocorrelations

2 / 33



Bad start

Topological charge
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A bad start
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Markov Chain Monte Carlo

Sequence of field configurations

U1 → U2 → U3 → · · · → UN

Generated by a transition probability
density

T(U′ ← U) ≥ 0 for all U,U′

Stability∫
[dU] T(U′ ← U) P[U] = P[U′]

Normalization∫
[dU′] T(U′ ← U) = 1
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Autocorrelations

Sequence of field configurations

U1 → U2 → U3 → · · · → UN

Measurements of observables are correlated

A1 → A2 → A3 → · · · → AN

Estimates

Ā ≈ ÃN =
1
N

N∑
i=1

Ai

How far is this off?
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Autocorrelations

Variance of estimator

〈〈(ÃN − Ā)2〉〉 =
1

N2

N∑
i,j=1

〈〈(Ai − A)(Aj − A)〉〉

For N large, this depends only on the difference in
simulation time

〈(ÃN − Ā)2〉 =
1
N

∞∑
t=−∞

ΓA(t)

ΓA(t) = 〈(A0 − Ā)(At − Ā)〉

Note:
again substitution average over simulations
→ average in simulation time
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Error of the measurement

〈(Ã− Ā)2〉 =
1
N

∞∑
t=−∞

ΓA(t) ; ΓA(t) = 〈(A0 − A)(At − A)〉

=
var(A)

N

∞∑
t=−∞

ρA(t)

Integrated autocorrelation time

τint(A) =
1
2

+
∞∑

t=1

ΓA(t)
ΓA(0)

≡ 1
2

+
∞∑

t=0

ρA(t)

Error of the measurement

σA =

√
var(A)

N/(2τint(A))

Measures efficiency of algorithm.
→ eff. statistics reduced by 2τint

Can depend strongly on observable A.
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Measuring autocorrelations
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We only have a limited precision estimate of the
integrand.
Summing to t =∞ leads to diverging variance.
→ need to cut the summation
→ biased estimate
Need to find a balance between stat. and syst. error.
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Error of τint

τint(A) =
1
2

+
W∑

t=1

ΓA(t)
ΓA(0)

Systematic error

Summation truncated at W
→ neglect potentially large tail.
Particular problem in presence of slow modes.

Statistical error Madras,Sokal

〈[τ̃int(A,W)− τint(A,W)]2〉 ≈ 4
N

(W +
1
2
− τint(A))τint(A)2

Infinite variance for W →∞.
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Criteria for W

All automatic methods are problematic.

Cut where δΓ > Γ
→ large systematic error
Madras-Sokal criterion
→minimum of sum of systematic and statistical error

δ
√
τ√
τ
∝ min

W

(
e−W/τ + 2

√
W/N

)
ALPHA method (2010)
Estimate τexp from various (slow) observables
Add tail to all other observables before losing
signal ΓA
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Attaching the tail

ALPHA collaboration, 2012

Use slow observables and scaling laws to estimate tail.
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Detailed balance

Detailed balance

T(U′ ← U) P[U] = P[U′] T(U′ ← U)

Implies stability∫
[dU]T(U′ ← U)P[U] =

∫
[dU]P[U′]T(U′ ← U) = P[U′]

Elementary steps frequently fulfill this condition.

As a consequence we have a symmetric matrix M

M(U′ ← U) = P[U′]−1/2T(U′ ← U)P[U]1/2
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Detailed balance

Detailed balance

T(U′ ← U) P[U] = P[U′] T(U′ ← U)

Associated symmetric matrix M

M(U′ ← U) = P[U′]−1/2T(U′ ← U)P[U]1/2

If η eigenvector of T

ξ(U) = P−1/2(U)η(U)

is eigenvector of M with the same eigenvalue λ.

Spectral decomposition

M =
∑

i

λi ξiξ
†
i
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Autocorrelation

Spectral decomposition

ΓA(t) = 〈 (At − Ā) (A0 − Ā) 〉

=
∫

[dU][dU′]δA(U′) Tt(U′ ← U) δA(U) P[U]

=
∫

[dU][dU′]P1/2[U′]δA(U′)Mt(U′ ← U)δA(U)P1/2[U]

=
∑
n>0

(λn)t [cn(A)]2

With “matrix elements”

cn(A) =
∫

[dU]ξn(U)[P[U]]1/2(A(U)− Ā)
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Spectral representation

ΓA(t) =
∑

n
(λn)t [cn(A)]2

=
∑

n
signλn e−t/τn [cn(A)]2

τn = 1/ log |λn| > 0
For the analysis of algorithms it is useful to think of
Monte Carlo time t as a fifth dimension.
Autocorrelation function is a 2pt function.
time constants τn → inverse masses
Slowest decay τ1 → exponential AC time
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Comments

ΓA(t) =
∑

n
e−t/τnc2

n(A)

τn depend only on algorithm
Matrix elements cn depend on observable.
All observables affected by slow modes.

Length of a simulation

Simulation must have length of at least O(100)× τ1.
τint(A) can be much smaller than τ1

Danger of
Incomplete thermalization.
Bias.
Wrong estimate of autocorrelations.
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Thermalization
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Same decay rates contribute as in τint
different initial distribution/matrix elements∫

[dU][dU′]P1/2[U′]δA(U′)Mt(U′ ← U)δA(U)
P0[U]

P1/2[U]

=
∑
n>0

(λn)t [cn(A)][c(0)
n (A)]

Opportunity to learn about largest τ1.
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Observables

Need to look at observables with large ci(Ak), i small.
Hunt for slow quantities.

Noise can cover up auto-correlations (η Gaussian noise)

A→ A + cη ⇒ Γ(t)→ Γ(t) + c2δt,0

⇒ τint(A)→ τint(A)
var(A)

var(A) + c2

Look at low-noise observables

Take into consideration expected scaling properties

τint ∝
1
a2 for a→ 0
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Wilson flow

LÜSCHER’10, LÜSCHER&WEISZ’11

Smoothing with gradient flow at fixed flow time t = t0.

∂tVt(x, µ) = −g2
0 [∂x,µS(Vt)] Vt(x, µ); Vt(x, µ)|t= = U(x, µ)

Gaussian smoothing over r ∼
√

8t.
Renormalized quantities with continuum limit.
Smooth observables→ long autocorrelations.

E = − a3

2L3

∑
~x

tr GµνGµν

∣∣
x0=T/2

Q = − a3

32π2

∑
~x

tr G̃µνGµν

∣∣
x0=T/2

Q = − a4

32π2

∑
x

tr G̃µνGµν
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Effect of the smoothing

Autocorrelation time of Ē vs smoothing range (a=0.05fm).
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τint saturates with τint = 93 + ae−ct.
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Dangers

Algorithm is slow.
Detectable by
measuring
autocorrelations.

There are barriers in field
space.
Hard to detect.
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Topological charge

Q = − 1
32π2

∫
d x εµνρσtr FµνFρσ

In continuum limit, disconnected topological sectors
emerge.
The probability of configurations “in between” sectors
drops rapidly. M. LÜSCHER, ’10

Simulations get stuck in one sector.
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Q=1

Q=2
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Topological charge

Tunneling is a cut-off effect.
Quasi continuous algorithms will not cure it.
Problem for interpretation of data.
Fixed topology introduces finite volume effects.

〈A〉 = 〈A〉Q=Q0 · {1 +O(V−1)}

Prevents simulations on fine lattices.
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Topological charge

Best recipe: Avoid large autocorrelations τn.

Special case: Topological charge

In the continuum, topological sectors form.
Consequence of the periodic boundary conditions.

Happens very quickly as a→ 0.
Engel, S.’10
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Example from CPN−1 model

Topological charge AC dominates other observables.
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Solution:
Use setup without topological sectors
→ Open boundary conditions.
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Boundary conditions

Periodic boundary conditions do not let charge flow
out of the volume.
Field space is disconnected in continuum.
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Open boundary conditions

Proposed solution

open boundary condition in time direction
→ same transfer matrix, same particle spectrum
periodic boundary condition in spatial directions
→momentum projection possible
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Open boundary conditions

Lattices of size T × L3.
Neumann boundary conditions in time.

Gauge fields

F0k|x0=0 = F0k|x0=T = 0, k = 1,2,3

Fermion fields

P+ψ(x)|x0=0 = P−ψ(x)|x0=T = 0 P± =
1
2

(1± γ0)

ψ̄(x)P−|x0=0 = ψ̄(x)P+|x0=T = 0
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Critical slowing down

Continuum limit = continuous phase transition

Universal dynamical critical behavior

How do Γ(t) and τint scale as a→ 0?

Free field expectation

τint ∝ a−1

broken by interactions Lüscher, S ’11

Expected Langevin (random walk) scaling

τint ∝ a−2
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Scaling towards continuum limit

Autocorrelation function vs scaled MC time
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Energy (on time slice) shows very good scaling.
Large cut-off effects in topological observables.
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Scaling towards continuum limit: τint vs a−2
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HMC and SMD0.3 show same scaling up to a constant.
→ universal behavior
Topological observables well described by
τint = c1 + c2/a2

Also Q2 and Q̄2 show a2 scaling for a→ 0.
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What can we expect? S.S. 2012

Experience

Improved Wilson fermions, Iwasaki gauge action.
64× 323 lattice, a = 0.09 fm
physical light and strange quark mass, mπL = 2
τint(E) ∼ O(20)

Estimate

Twice larger lattice for mπL = 4, L ≈ 6 fm.
Run length 100 · τint(E) = 2000 · (a/0.09fm)−2.

cost = 3 Tflops · years · (a/0.09fm)−7

a = 0.045 fm still cost 400 Tflops·years.
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