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What happened so far
Methods for Markov Chain Monte Carlo

Sequence of field configuratoins
—MC fime series of measurements

Field updates are expensive — limited statistics

Outline for today
Methods to deal with autocorrelations
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Topological charge
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Markov Chain Monte Carlo

Sequence of field configurations
Up - Uy - Us — --— Ux

Generated by a transition probability
density

TU «—U)>0 foralU,U’

Stability
/[dU] T(U — U)P[U] = P|U'|
Normalization

/[dU’] T —U) =1

33



Sequence of field configurations
Uy - Uy — Us — ---— Uy
Measurements of observables are correlated
Al - Ay — A3 — - — Ay
Estimates

How far is this off?
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Autocorrelations

Variance of estimator
- _ 1 N
((Ay —A)?) = N2 > (A —A) A4 —A))
ij=1
For N large, this depends only on the difference in
simulation fime

1 o0

Note:
again substitution average over simulations
— average in simulation time
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Error of the measurement

(A-A% =1 S ra@);  Tal) = (Ao A)A - A)

=S

t=—00

Integrated autocorrelation time

) = Sy 3 a0 1 s 0

Error of the measurement

var(A)
N/(27nt(A))
Measures efficiency of algorithm.
— eff, statistics reduced by 27,;

A —
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Measuring autocorrelations
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We only have a limited precision estimate of the
infegrand.

Summing to t = oo leads to diverging variance.

— need to cut the summation

— biased estimate

Need to find a balance between stat. and syst. error.
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Error of ript

7_int

Y Ta(t)
Zl 0)

l\D\H

Systematic error

Summation truncated at W
— neglect potentially large tail.
Particular problem in presence of slow modes.

Statistical error Madras,Sokal

4 1

<[7~—int (A’ W) Tint (A W)] > ~N (W + — Tint (A))Tint (A)2

Infinite variance for W — oo.
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Criteria for W

All automatic methods are problematic.

m Cutwhere 6" > T
— large systematic error

m Madras-Sokal criterion
— minimum of sum of systematic and statistical error

6\\; x mwlln < Wit 2\/W/N>
m ALPHA method (2010)
Estimate 7exp, from various (slow) observables
Add tail to all other observables before losing
signal T'y
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ALPHA collaboration, 2012
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Use slow observables and scaling laws to estimate tail.
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Detailed balance

T(U' — U)P[U] = PU'| T(U' — U)
implies stability
/ dUIT(U' — U)P[U] = / AUIPUIT(U' — U) = PIU

Elementary steps frequently fulfill this condition.

As a conseguence we have a symmetric matrix M

MU' — U) =P[U'|"'*T(U « U)P[U]"/?
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Detailed balance

Detailed balance
T(U' — U)P[U] = PIU'| T(U' — U)
Associated symmetric matrix M
MU — U) =P[U"\2T(U" — U)P[U|Y/?
If n eigenvector of T
§U) =P VAU)M(U)
is eigenvector of M with the same eigenvalue ).

Spectral decomposition

M=) N
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Spectral decomposition
TA(t) = ((Ar—A) (A9 —A))
= /[dU][dU’]éA(U’) TH(U — U)SA(U) P[U|

= Z ) [en (A

n>0

With “matrix elements”

en(A) = / AU, (U)PUTVXA(U) - A)
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Spectral representation

La(t) =) (M) ea(A)P?

n

= signi,e ™ ey (A)]?

B =1/log|\] >0

m For the analysis of algorithms it is useful to think of
Monte Carlo time ¢ as a fifth dimension.

m Autocorrelation function is a 2pt function.
m time constants 7, — inverse masses
m Slowest decay r; — exponential AC time
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Comments

La(t) =) e "mer(A)

m 7, depend only on algorithm
m Matrix elements ¢, depend on observable.
m All observables affected by slow modes.

Length of a simulation

m Simulatfion must have length of at least O(100) x 7y.

B 7y (A) can be much smaller than
m Danger of

m Incomplete thermalization.
m Bics.
m Wrong estimate of autocorrelations.
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Thermalization
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Same decay rates contribute As in Ty
different initial distribution/matrix elements

[aviau P A M @ - A S

P12[U]
=3 O fealA)icl” (A)]

n>0

Opportunity to learn about largest .
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Observables

Need to look at observables with large ¢;(Az). i small.
Hunt for slow quantities.

Noise can cover up auto-correlations  (n Gaussian noise)

A—A+cn = T(t) — T(t) + ¢4
var(A)
= Tint(A) — Tlnt(A)m

Look at low-noise observables

Take into consideration expected scaling properties

1
Tint X — fOr a —0
a
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Wilson flow

LUSCHER 10, LUSCHER&WEISZ' 11
m Smoothing with gradient flow aft fixed flow time ¢ = ¢,.

Vi, 1) = —g5 [0x,wS(Ve)] Vi, 1) Vielee, p)|s— = Ulae, )

m Gaussian smoothing over r ~ v/8t.
B Renormalized quantities with continuum limit.
m Smooth observables — long autocorrelations.
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Effect of the smoothing

Autocorrelation time of E vs smoothing range (a=0.05fm).
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m /8t smoothing radius — ¢ = £y Smoothing over r =~ ry
B 7, Saturates with 7,y = 93 + ae ™.
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m Algorithm is slow. m There are barriers in field
m Detectable by space.

measuring

. m Hard to detect.
autocorrelations.
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Topological charge

1
Q = W/deNVpgtrFuprg

m In confinuum limit, disconnected topological sectors

emerge.
m The probability of configurations “in between” sectors
drops rapidly. M. LUSCHER, "10

m Simulations get stuck in one sector.

(=
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Topological charge

m Tunneling is a cut-off effect.

B Quasi confinuous algorithms will not cure it.

m Problem for interpretation of data.

m Fixed topology infroduces finite volume effects.

(A) = (A)g—q, - {1+0(V )}

m Prevents simulations on fine laffices.

(s
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Topological charge

Best recipe: Avoid large autocorrelations 7.

Special case: Topological charge

In the continuum, topological sectors form.
Conseqguence of the periodic boundary conditions.

Happens very quickly as a — 0.
Engel, S’10
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Example from CP¥-1 model

Topological charge AC dominates other observables.
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Solution:
Use setup without topological sectors
— Open boundary conditions.
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Boundary conditions

m Periodic boundary conditions do not let charge flow
out of the volume.

m Field space is disconnected in continuum.
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Open boundary conditions

Proposed solution

B open boundary condition in time direction
— same transfer matrix, same particle spectrum

m periodic boundary condition in spatial directions
— momentum projection possible
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Open boundary conditions

m Lattices of size T x L3.
m Neumann boundary conditions in time.

|
m Gauge fields
Forlxy=0 = Forlxy=7 =0, k=1,2,3
m Fermion fields
Pob@)lyeo = PU@lyr =0 Pi=3(1%10)
$(@)P_|yy=0 = P(x)Pt |ty = 0
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Critical slowing down

Continuum limit = confinuous phase transition

Universal dynamical critical behavior

How do I'(¢) and 7, Scale as a — 07
Free field expectation
Tint X Q@

broken by interactions Luscher, S “11

Expected Langevin (random walk) scaling

Tint X a_2
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Scaling towards continuum limit

Autocorrelation function vs scaled MC time
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m Energy (on time slice) shows very good scaling.
m Large cut-off effects in topological observables.
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Scaling towards continuum limit: 7 VS a2
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m HMC and SMDy 3 show same scaling up to a constant.

— universal behavior

m Topological observables well described by
Tint = C1 + c2/a2

m Also @2 and @2 show a? scaling for a — 0.
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What can we expect? $S8.2

Experience

m Improved Wilson fermions, Iwasaki gauge action.
m 64 x 323 lattice, a = 0.09 fm

m physical light and strange quark mass, m L = 2
W Tine (E) ~ O(20)

m Twice larger latftice form,L = 4, L =~ 6fm.
® Run length 100 - 73, (E) = 2000 - (a/0.09fm) 2,

cost = 3 Tflops - years - (¢,/0.09fm) "

m a = 0.045 fm still cost 400 Tflops-years.

012
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