Algorithms in Lattice QCD V

Stefan Schaefer

NIC, DESY

Kolkata Lattice Gauge Theory School

What happened so far

Methods for Markov Chain Monte Carlo

Sequence of field configuratoins

 \rightarrow MC time series of measurements

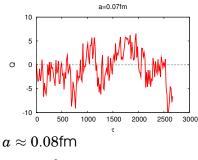
Field updates are expensive \rightarrow limited statistics

Outline for today

Methods to deal with autocorrelations

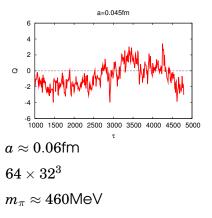
Bad start

Topological charge

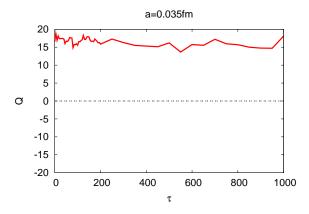


 $64 imes 32^3$

 $m_\pi pprox 360 {
m MeV}$



A bad start



a pprox 0.04fm

 128×64^3

 $m_\pi pprox 480 {
m MeV}$

Markov Chain Monte Carlo

Sequence of field configurations

$$U_1 o U_2 o U_3 o \cdots o U_N$$

Generated by a **transition probability** density

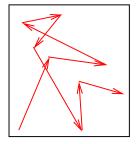
$$T(U' \leftarrow U) \geq 0$$
 for all U, U'

Stability

$$\int [dU] \, T(U' \leftarrow U) \, P[U] = P[U']$$

Normalization

$$\int [dU'] \, T(U' \leftarrow U) = 1$$



Autocorrelations

Sequence of field configurations

$$U_1 o U_2 o U_3 o \cdots o U_N$$

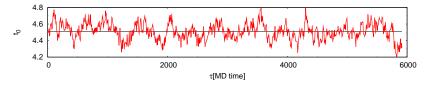
Measurements of observables are correlated

$$A_1 o A_2 o A_3 o \cdots o A_N$$

Estimates

$$ar{A}pprox ilde{A}_N = rac{1}{N}\sum_{i=1}^N A_i$$

How far is this off?



Autocorrelations

Variance of estimator

$$\langle\!\langle (ilde{A}_N-ar{A})^2
angle\!
angle=rac{1}{N^2}\sum_{i,j=1}^N\langle\!\langle (A_i-A)(A_j-A)
angle\!
angle$$

For N large, this depends only on the difference in simulation time

$$egin{aligned} &\langle (ilde{A}_N-ar{A})^2
angle = rac{1}{N}\sum_{t=-\infty}^{\infty}\Gamma_A(t) \ &\Gamma_A(t) = \langle (A_0-ar{A})(A_t-ar{A})
angle \end{aligned}$$

Note:

again substitution average over simulations

 \rightarrow average in simulation time

Error of the measurement

$$egin{aligned} &\langle (ilde{A}-ar{A})^2
angle &= rac{1}{N}\sum_{t=-\infty}^{\infty}\Gamma_A(t) \;; & \Gamma_A(t) \;\; = \langle (A_0-A)(A_t-A)
angle \ &= rac{ ext{var}(A)}{N}\sum_{t=-\infty}^{\infty}
ho_A(t) \end{aligned}$$

Integrated autocorrelation time

$$\tau_{\rm int}(A) = \frac{1}{2} + \sum_{t=1}^{\infty} \frac{\Gamma_A(t)}{\Gamma_A(0)} \equiv \frac{1}{2} + \sum_{t=0}^{\infty} \rho_A(t)$$

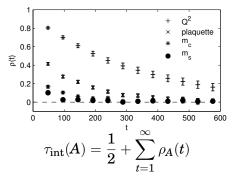
Error of the measurement

$$\sigma_A = \sqrt{rac{\mathrm{var}(A)}{N/(2 au_{\mathrm{int}}(A))}}$$

Measures efficiency of algorithm.

 \rightarrow eff. statistics reduced by $2\tau_{int}$

Measuring autocorrelations



We only have a limited precision estimate of the integrand.

Summing to $t = \infty$ leads to diverging variance.

 \rightarrow need to cut the summation

 \rightarrow biased estimate

Need to find a balance between stat. and syst. error.

Error of τ_{int}

$$au_{ ext{int}}(A) = rac{1}{2} + \sum_{t=1}^W rac{\Gamma_A(t)}{\Gamma_A(0)}$$

Systematic error

Summation truncated at W \rightarrow neglect potentially large tail. Particular problem in presence of slow modes.

Statistical error

Madras,Sokal

$$\langle [ilde{ au}_{ ext{int}}(A,W) - au_{ ext{int}}(A,W)]^2
angle pprox rac{4}{N} (W + rac{1}{2} - au_{ ext{int}}(A)) au_{ ext{int}}(A)^2$$

Infinite variance for $W \to \infty$.

Criteria for W

All automatic methods are problematic.

• Cut where $\delta\Gamma > \Gamma$

 \rightarrow large systematic error

Madras-Sokal criterion

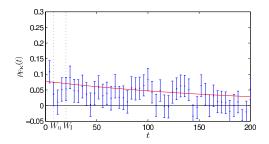
 \rightarrow minimum of sum of systematic and statistical error

$$rac{\delta\sqrt{ au}}{\sqrt{ au}} \propto \min_W \left(e^{-W/ au} + 2\sqrt{W/N}
ight)$$

ALPHA method (2010) Estimate τ_{exp} from various (slow) observables Add tail to all other observables before losing signal Γ_A

Attaching the tail

ALPHA collaboration, 2012



Use slow observables and scaling laws to estimate tail.

Detailed balance

Detailed balance

$$T(U' \leftarrow U) P[U] = P[U'] T(U' \leftarrow U)$$

Implies stability

$$\int [dU]T(U' \leftarrow U)P[U] = \int [dU]P[U']T(U' \leftarrow U) = P[U']$$

Elementary steps frequently fulfill this condition.

As a consequence we have a symmetric matrix M

$$M(U' \leftarrow U) = P[U']^{-1/2}T(U' \leftarrow U)P[U]^{1/2}$$

Detailed balance

Detailed balance

$$T(U' \leftarrow U) \, P[U] = P[U'] \, T(U' \leftarrow U)$$

Associated symmetric matrix M

$$M(U' \leftarrow U) = P[U']^{-1/2}T(U' \leftarrow U)P[U]^{1/2}$$

If η eigenvector of T

$$\xi(U)=P^{-1/2}(U)\eta(U)$$

is eigenvector of M with the same eigenvalue λ .

Spectral decomposition

$$M = \sum_i \lambda_i \, \xi_i \xi_i^\dagger$$

Autocorrelation

Spectral decomposition

$$egin{aligned} &\Gamma_A(t) \ &= \ \langle \left(A_t - ar{A}
ight) \left(A_0 - ar{A}
ight)
ight
angle \ &= \ \int [dU] [dU'] \delta A(U') \, T^t(U' \leftarrow U) \, \delta A(U) \, P[U] \ &= \ \int [dU] [dU'] P^{1/2} [U'] \delta A(U') M^t(U' \leftarrow U) \delta A(U) P^{1/2} [U] \ &= \ \sum_{n > 0} (\lambda_n)^t \, [c_n(A)]^2 \end{aligned}$$

With "matrix elements"

$$c_n(A) = \int [dU] \xi_n(U) [P[U]]^{1/2} (A(U) - ar{A})$$

Spectral representation

$$egin{aligned} \Gamma_A(t) &= \sum_n \left(\lambda_n
ight)^t \left[c_n(A)
ight]^2 \ &= \sum_n \mathrm{sign}\lambda_n \, e^{-t/ au_n} \, [c_n(A)]^2 \end{aligned}$$

- For the analysis of algorithms it is useful to think of Monte Carlo time t as a fifth dimension.
- Autocorrelation function is a 2pt function.
- time constants $au_n
 ightarrow$ inverse masses
- Slowest decay $\tau_1 \rightarrow$ exponential AC time

Comments

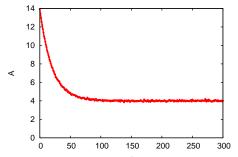
$$\Gamma_A(t) = \sum_n e^{-t/ au_n} c_n^2(A)$$

- τ_n depend only on algorithm
- Matrix elements c_n depend on observable.
- All observables affected by slow modes.

Length of a simulation

- Simulation must have length of at least $O(100) \times \tau_1$.
- $au_{\mathrm{int}}(A)$ can be much smaller than au_1
- Danger of
 - Incomplete thermalization.
 - Bias.
 - Wrong estimate of autocorrelations.

Thermalization



Same decay rates contribute \dot{a} s in τ_{int} different initial distribution/matrix elements

$$\begin{split} &\int [dU] [dU'] P^{1/2} [U'] \delta A(U') M^t (U' \leftarrow U) \delta A(U) \frac{P_0[U]}{P^{1/2}[U]} \\ &= \sum_{n > 0} (\lambda_n)^t \, [c_n(A)] [c_n^{(0)}(A)] \end{split}$$

Opportunity to learn about largest τ_1 .

Observables

Need to look at observables with large $c_i(A_k)$, i small. Hunt for slow quantities.

Noise can cover up auto-correlations (η Gaussian noise)

$$egin{array}{rl} A o A + c\eta & \Rightarrow & \Gamma(t) o \Gamma(t) + c^2 \delta_{t,0} \ & \Rightarrow & au_{ ext{int}}(A) o au_{ ext{int}}(A) rac{ ext{var}(A)}{ ext{var}(A) + c^2} \end{array}$$

Look at low-noise observables

Take into consideration expected scaling properties

$$au_{
m int} \propto rac{1}{a^2}$$
 for $a
ightarrow 0$

Wilson flow

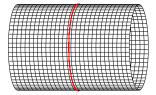
LÜSCHER'10, LÜSCHER&WEISZ'11

Smoothing with gradient flow at fixed flow time $t = t_0$.

 $\partial_t V_t(x,\mu) = -g_0^2 \left[\partial_{x,\mu} S(V_t)\right] V_t(x,\mu); \quad V_t(x,\mu)|_{t=} = U(x,\mu)$

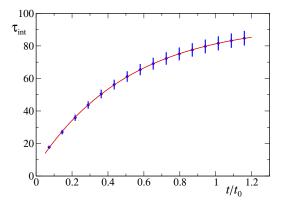
- Gaussian smoothing over $r \sim \sqrt{8t}$.
- Renormalized quantities with continuum limit.
- \blacksquare Smooth observables \rightarrow long autocorrelations.

$$ar{E}=-rac{a^3}{2L^3}\sum_{ec{x}}\mathrm{tr}\,G_{\mu
u}G_{\mu
u}ig|_{x_0=T/2}
onumber\ egin{array}{c} \overline{Q}=-rac{a^3}{32\pi^2}\sum_{ec{x}}\mathrm{tr}\, ilde{G}_{\mu
u}G_{\mu
u}ig|_{x_0=T/2}
onumber\ Q=-rac{a^4}{32\pi^2}\sum_{ec{x}}\mathrm{tr}\, ilde{G}_{\mu
u}G_{\mu
u}
onumber$$



Effect of the smoothing

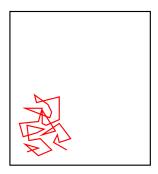
Autocorrelation time of \overline{E} vs smoothing range (a=0.05fm).



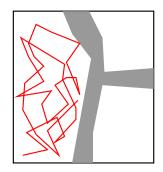
■ $\sqrt{8t}$ smoothing radius $\rightarrow t = t_0$ smoothing over $r \approx r_0$ ■ τ_{int} saturates with $\tau_{\text{int}} = 93 + ae^{-ct}$.

Dangers

- Algorithm is slow.
- Detectable by measuring autocorrelations.



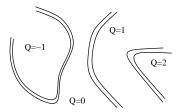
- There are barriers in field space.
- Hard to detect.



Topological charge

$$Q=-rac{1}{32\pi^2}\int d\,x\,\epsilon_{\mu
u
ho\sigma}{
m tr}\,F_{\mu
u}F_{
ho\sigma}$$

- In continuum limit, disconnected topological sectors emerge.
- The probability of configurations "in between" sectors drops rapidly.
 M. LÜSCHER, '10
- Simulations get stuck in one sector.



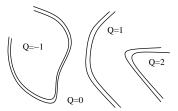
Topological charge

Tunneling is a cut-off effect.

- Quasi continuous algorithms will not cure it.
- Problem for interpretation of data.
- Fixed topology introduces finite volume effects.

$$\langle A
angle = \langle A
angle_{oldsymbol{Q} = oldsymbol{Q}_0} \, \cdot \, \{1 + \mathcal{O}(V^{-1})\}$$

Prevents simulations on fine lattices.



Topological charge

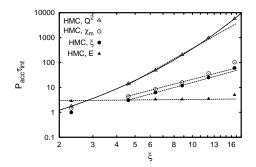
Best recipe: Avoid large autocorrelations τ_n .

Special case: Topological charge

In the continuum, topological sectors form. Consequence of the periodic boundary conditions.

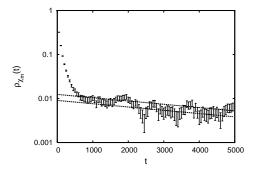
Happens very quickly as $a \rightarrow 0$.

Engel, S.'10



Example from CP^{N-1} model

Topological charge AC dominates other observables.



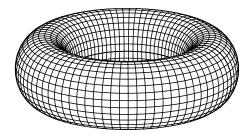
Solution:

Use setup without topological sectors

 \rightarrow Open boundary conditions.

Boundary conditions

- Periodic boundary conditions do not let charge flow out of the volume.
- Field space is disconnected in continuum.



Open boundary conditions

Proposed solution

- open boundary condition in time direction → same transfer matrix, same particle spectrum
- periodic boundary condition in spatial directions → momentum projection possible

Open boundary conditions

• Lattices of size $T \times L^3$.

Neumann boundary conditions in time.

Gauge fields

$$F_{0k}|_{x_0=0}=F_{0k}|_{x_0=T}=0, \ \ k=1,2,3$$

Fermion fields

$$\begin{split} P_{+}\psi(x)|_{x_{0}=0} &= P_{-}\psi(x)|_{x_{0}=T} = 0 \qquad P_{\pm} = \frac{1}{2}(1\pm\gamma_{0})\\ \bar{\psi}(x)P_{-}|_{x_{0}=0} &= \bar{\psi}(x)P_{+}|_{x_{0}=T} = 0 \end{split}$$

Critical slowing down

Continuum limit = continuous phase transition

Universal dynamical critical behavior

```
How do \Gamma(t) and \tau_{\text{int}} scale as a \rightarrow 0?
```

Free field expectation

$$au_{
m int} \propto a^{-1}$$

broken by interactions

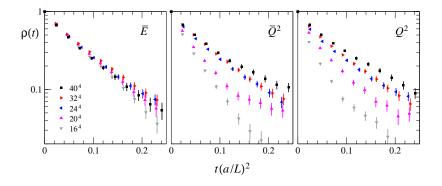
Lüscher, S '11

Expected Langevin (random walk) scaling

$$au_{
m int} \propto a^{-2}$$

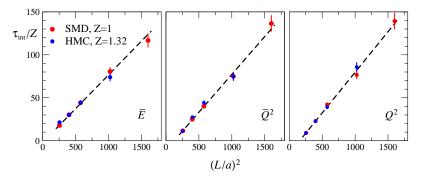
Scaling towards continuum limit

Autocorrelation function vs scaled MC time



Energy (on time slice) shows very good scaling.Large cut-off effects in topological observables.

Scaling towards continuum limit: $au_{ m int}$ vs a^{-2}



- \blacksquare HMC and SMD_{0.3} show same scaling up to a constant. \rightarrow universal behavior
- Topological observables well described by

$$au_{
m int}=c_1+c_2/a^2$$

Also Q^2 and \bar{Q}^2 show a^2 scaling for a
ightarrow 0.

Experience

- Improved Wilson fermions, Iwasaki gauge action.
- $64 imes 32^3$ lattice, a = 0.09 fm
- lacksquare physical light and strange quark mass, $m_\pi L=2$
- $\tau_{\rm int}(E) \sim {\rm O}(20)$

Estimate

- Twice larger lattice for $m_{\pi}L = 4$, $L \approx 6$ fm.
- Run length $100 \cdot \tau_{\text{int}}(E) = 2000 \cdot (a/0.09 \text{fm})^{-2}$.

 $cost = 3 T flops \cdot years \cdot (a/0.09 fm)^{-7}$

■ a = 0.045 fm still cost 400 Tflops years.