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Solving the Dirac equation

Classical iterative methods are based on contructing
solution of the Dirac equation

Dψ = φ

in the Krylov space

Kn = span{φ,Dφ, . . . ,Dnφ}

They tend to converge with an exponential rate on the
scale of the inverse condition number.

Need of deflating the system at small quark masses.

Global deflation works, but is prohibitivly expensive on
large systems.
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Exact deflation with eigenvectors

Elimitate these eigenmodes from the Dirac equation.

Dψi = λi ψi

Projector on small eigenmodes ψi

P =
Ns∑
i=1

ψi ψ
†
i

Using it, we can split the Dirac equation in two

D =
(

P D P 0
0 (1− P)D(1− P)

)
⇒ D−1 =

(∑Ns
i=1

1
λi
ψi ψ

†
i 0

0 [(1− P)D(1− P)]−1

)
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Local deflation

The problem of “classical” deflation is the scaling with the
volume.
Need Ns ∝ V modes w/ cost/mode at least ∝ V.

Local coherence
Lüscher’07

Experimental fact:
Locally eigenvectors with λ < 100 MeV can be
constructed from very few components.

Procedure:
Take N0 lowest eigenmodes.

Decompose the lattice in small blocks Λi, e.g., (0.3 fm)4

Consider space spanned by block projected vectors.

R = span
{

PΛiψj| i = 1, . . . ,Nblock, j = 1, . . . ,N0
}
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Deflation subspace

R = span
{

PΛiψj| i = 1, . . . ,Nblock, j = 1, . . . ,N0
}

Define deficit
ε = |PRψi − ψi|

with PR the orthonormal projector to R.

Experimental finding:

The deficit for eigenvectors ψi with eigenvalue ≤ 100 MeV
is small, N0 ∼ 12.

ε ≈ O(few %)
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Local coherence

This result can be interpreted as consequence of local
coherence.

In each point, the IR fields are aligned.

However, the vectors in R are quite discontinuous.

They can only be decent approximations to the
eigenvectors in the centers of the blocks.

Big advantage is that size of deflation space ∝ volume.

Eigenvectors do not need to be very exact.
A few inverse iterations suffice.
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Implementation in a solver

Decomposition of the Dirac operator

D =
(

(1− PR) D (1− PR) (1− PR)DPR
PRD (1− PR) PRD PR

)
with the “little Dirac operator”

DLL = PRD PR

This is a (NsNblock)2 matrix.
Using the usual Schur complement trick(

DHH DHL
DLH DLL

)−1

=(
1 0

−D−1
LLDLH 1

)(
(DHH −DHLD−1

LLDLH)−1 0
0 D−1

LL

)(
1 −DHLD−1

LL
0 1

)
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Deflating the Dirac equation

The Schur complement trick reduces the problem to the
solution of

DLLψ‖ = φ‖

(DHH −DHLD−1
LLDLH)ψ⊥ = φ⊥

The condition number of the matrix in the second
equation is significantly reduced.

Rewrite 2nd eq. in form of preconditioning

(1−DPR(PRDPR)−1PR) Dψ⊥ = φ⊥

Can be solved with a GCR, but this is still expensive due to
solution of the little system.

Still need a good preconditioner to make it feasible
Needs to be effective in the UV
→ Schwarz alternating procedure
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Performance of the deflated GCR

Plot from original paper
M. Lüscher, Local coherence and deflation of the low quark modes in
lattice QCD, JHEP0707:081,2007
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Deflation and the HMC

The construction of the deflation subspace is not cheap.

The more solutions of the Dirac equation, the more it pays.
→ good for Hasenbusch decomposition

Low-modes evolve slowly in MC time
→ take subspace in several consecutive time step.
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HMC

Momentum and pseudofermion Heatbath

Refresh momenta π
Refresh pseudofermions φ→ kept fixed during trajectory
Initialization of deflation subspace

Molecular Dynamics

Solve numerically MD equations for some MC time τ .

π,(   U)
π,(  ’ U’)

Repeated refresh of deflation subspace.

Acceptance Step

Correcting for inaccuracies in integration.

Need to be careful for violation of reversibility.
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Commercial

What is presented here is implemented in the publicly
available openQCD code.
http://cern.ch/luscher/openQCD

Action: fermions

(Un)-improved Wilson fermions
Almost any number of flavors
Twisted mass fermions
limited support (no even-odd preconditioning)
Deflated solver not made for maximal twist.

Action: gauge fields

plaquette and 1× 2 rectangles
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Commercial (cont.)

Boundary conditions

Periodic b.c. in space

Open or SF b.c. in temporal direction

The code is very flexible:

Action defined in input file

Multiple time-scale integration scheme

Online measurements of gluonic observables.

Easy to extend
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Summary

Last decade has seen enormous progress in algorithms.

Starting point were standard, all-purpose techniques.

Physics driven ideas: frequency splitting, local deflation,. . .

Progress matches the development of computer
hardware.
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Measuring hadronic observables

The goal is to compute hadronic correlation functions on
a set of gauge configurations, e.g.

〈Pa(x) Pb(y)〉

with

Pa = ψ
1
2
τaγ5ψ and ψ =

(
u
d

)
Use Wick’s theorem to eliminate the Grassmann fields

〈Pa(x) Pb(y)〉 = −1
2
δab 〈trS(x, y)S(y, x)†〉

where the γ5 Hermiticity of the Dirac operator has been
used

S(x, y) = D−1(x, y) = γ5S(y, x)†γ5
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Practical computation

Traditional method:

〈trd,cS(x, y)S(y; x)†〉 =
∑

c,d,c′,d′

〈Sc,d;c′,d′(x, y)S(y; x)†c′,d′;c,d〉

For this one space-time column of the propagator is
needed.

Sc,d;c′,d′(x, y) = (S η(y,c′,d′))(x)c,d

with a point source

η
(x0,c0,d0)
c,d (x) = δx,x0δc,c0δd,d0

Solve Dirac equation for the 4× 3 Dirac–color index
combinations

Dφ = η(y,c,d)

Get propagator from one point to all other points.
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Volume average

Pion propagator projected on zero momentum

CPP(x0 − y0) = − 1
V

∑
~x

∑
~y

〈trd,cS(x, y)S(y; x)†〉

Using point sources, the sum over y is difficult to do,
would need 12V solutions of the Dirac equation.

Translational invariance helps, need sum only at one end.

Still need O(L3) inversions in large volume to fully sample
information.

Use a stochastic estimate for the traces.
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Noise sources

Insert additional complex scalar fields into your partition
function.
Here just for one time slice y0; ”one-end trick”.

Zη =
∫

[dη][dη†] e−(η,η)

Each lattice point, Dirac and color index has an
independent Gaussian random number

〈ηc,d(~x) η†c′,d′(~y)〉η = δ~x,~y δd,d′ δc,c′

Insert in correlation function

CPP(x0 − y0) = − 1
V

∑
~x

〈trd,cS(x, ·)ηη†S(·; x)†〉

here the 〈·〉 includes average over η fields.
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Stochastic estimate

CPP(x0 − y0) = − 1
V

∑
~x

〈trd,cS(x, ·)ηη†S(·; x)†〉

As always in Monte Carlo, we replace integrals by a sum
over a number of field realizations.

− 1
V

1
Ns

Ns∑
i=1

∑
~x

〈trd,cS(x, ·)ηiη
†
i S(·; x)†〉

Unbiased estimator, no need to take Ns large.
Also Ns = 1 is correct, but take new source on each
configuration. Integrals commute.

Need to solve one Dirac equation per source.
For pions O(10) give a very good signal.

For mesons, no need to use more sources as V →∞.
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Pion propagator
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Source couples to all states with given quantum numbers.
Excited states clearly visible at small x0.
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Effective mass

Since exponential fall-off is difficult to judge, one typically
looks at quantities that show a plateau.

C(x0)
C(x0 + a)

=
A e−mx0

A e−m(x0+a)
= eam

Effective mass

ameff = log
C(x0)

C(x0 + a)
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Statistical error

Reminder:
The square of the error of a measuremnt is proportional to
the variance of the observable

σ2(A) = 〈A2〉 − 〈A〉2

Parisi’83
The variance is a physical observable, the exponential
fall-off can be predicted.

〈A〉 = 〈Pa(x) Pb(y)〉 → σ2(A) = 〈Pa(x)Pa(x) Pb(y)Pb(y)〉 − 〈A〉2

∝ e−Eπ |x−y| ∝ e−E2π |x−y|

In large volume, E2π = 2mπ = 2Eπ

Constant signal-to-noise ratio

〈A〉
σ(A)

∝ e−mπ |x−y|
√

e−2mπ |x−y|
= const.
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Signal-to-noise problem

For the nucleon, one considers

〈A〉 = Γαβ〈Nα(x)N̄β(y)〉 ∝ e−EN |x−y|

Variance

〈A2〉−〈A〉2“ = “〈N(x)N̄(x) N(y)N̄(y)〉−(〈N(x) N̄(y))2〉 ∝ e−E3π |x−y|

Matches quantum numbers of three pions and therefore
the signal-to-noise ratio is

〈A〉
σ(A)

= e−(mN− 3
2 mπ)|x−y|

Exponential reduction once mN > 3
2mπ.

Makes calculations of proton properties exceedingly
difficult.
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Summary fermions

Most effort goes into fermions.

Deflation of Dirac equation brought great progress.
Is there even more possible?

Computation of PS meson two-point functions
well-established.

Significant challenges in baryon sector.
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