Algorithms for Lattice QCD III

Stefan Schaefer

NIC, DESY

Lattice Gauge Theory School

Introduction

1 General idea of Markov Chain Monte Carlo
HMC algorithm \rightarrow classical equations of motion

2 Integrators and Fermions
det \rightarrow pseudofermions
\rightarrow Need solution of Dirac equation
Hasenbusch factorization
Other fermion methods
3 Methods to solve the Dirac equation

Factorizations

Hasenbusch

$$
\operatorname{det} Q^{2}=\operatorname{det} \frac{Q^{2}}{Q^{2}+\mu_{1}^{2}} \operatorname{det} \frac{Q^{2}+\mu_{1}^{2}}{Q^{2}+\mu_{2}^{2}} \cdots \operatorname{det}\left(Q^{2}+\mu_{N}^{2}\right)
$$

RHMC
Kennedy, Horvath, Sint’99, Clark, Kennedy'07

$$
\operatorname{det} Q^{2}=\prod_{i=1}^{N} \operatorname{det} \sqrt[N]{Q^{2}}
$$

Domain decomposition

$$
\operatorname{det} Q=\operatorname{det} Q_{\mathrm{block}} \operatorname{det} R
$$

Domain decomposition

- Domain decomposition \rightarrow Divide the lattice in blocks

$$
\operatorname{det} D=\operatorname{det} D_{\text {block }} \cdot \operatorname{det} D_{\mathrm{R}}
$$

■ Do not update links connecting blocks
\rightarrow longer autocorrelations
■ Good for slow communication.

RHMC

To simulate non-degenerate flavors

$$
\operatorname{det} D=\operatorname{det}\left(1_{e}+D_{o o}\right) \operatorname{det} \hat{D}=\operatorname{det}\left(1_{e}+D_{o o}\right) \cdot W \cdot \operatorname{det} R^{-1}
$$

R : rational approximation to $\left(\hat{D}^{\dagger} \hat{D}\right)^{-1 / 2}$

$$
W=\operatorname{det}(\hat{D} R)
$$

Rational Zolotarov approximation

$$
R_{n, \epsilon}(y)=A \frac{\left(y+a_{1}\right)\left(y+a_{3}\right) \ldots\left(y+a_{2 n-1}\right)}{\left(y+a_{2}\right)\left(y+a_{4}\right) \ldots\left(y+a_{2 n}\right)}
$$

valid in range $\epsilon \leq y \leq 1$
Simulate with $R=1 \rightarrow$ include R by reweighting

Zolotarev rational approximation

$$
R_{n, \epsilon}(y)=A \frac{\left(y+a_{1}\right)\left(y+a_{3}\right) \ldots\left(y+a_{2 n-1}\right)}{\left(y+a_{2}\right)\left(y+a_{4}\right) \ldots\left(y+a_{2 n}\right)}
$$

Shifts $a_{i}>0$ can be quite small, in example $\sim 10^{-6}$. Small shifts have small contributions.

RHMC II

Split approximation in several factors

$$
\begin{aligned}
R_{n, \epsilon}(y) & =A \frac{\left(y+a_{1}\right)\left(y+a_{3}\right) \ldots\left(y+a_{2 n-1}\right)}{\left(y+a_{2}\right)\left(y+a_{4}\right) \ldots\left(y+a_{2 n}\right)} \\
& =A \frac{\left(y+a_{1}\right)\left(y+a_{3}\right)}{\left(y+a_{2}\right)\left(y+a_{4}\right)} \frac{\left(y+a_{5}\right) \ldots\left(y+a_{2 n-1}\right)}{\left(y+a_{5}\right) \ldots\left(y+a_{2 n}\right)}
\end{aligned}
$$

Each factor on a single pseudo-fermion, e.g.,
$S_{\text {RHMC }}=S_{1}+S_{2}=\phi_{1}^{\dagger} \frac{\left(y+a_{2}\right)\left(y+a_{4}\right)}{\left(y+a_{1}\right)\left(y+a_{3}\right)} \phi_{1}+\phi_{2}^{\dagger} \frac{\left(y+a_{6}\right)\left(y+a_{8}\right)}{\left(y+a_{5}\right)\left(y+a_{7}\right)} \phi_{2}$

Why?

Can use different solvers for different PF.
Separate expensive but small contributions
\rightarrow larger time scale

Twisted mass reweighting

Wilson fermions: Dirac operator is not protected from zero eigenvalues.

$$
S_{f}=-\operatorname{tr} \log Q^{2}
$$

\rightarrow action can become infinite
\rightarrow field space separated in sectors

Consequences

- Thermalization difficult
- Problems with ergodicity
- Difficulties with numerical integration (spikes in forces)

Twisted mass reweighting

Solution:

- Run with protected Dirac operator
- Correct in the measurement

Reweighting (Ferrenberg \& Swendsen '82)

$$
\begin{aligned}
\langle O\rangle & =\frac{1}{Z} \int \prod_{i, \mu} d U_{i, \mu} e^{-S_{g}-S_{f, \text { eff }} O[U]} \\
& =\frac{Z^{\prime}}{Z} \times \frac{1}{Z^{\prime}} \int \prod_{i, \mu} d U_{i, \mu} e^{-S_{g}-S_{f, \text { eff }}^{\prime}}\left(O[U] e^{-\left(S_{f, \text { eff }}-S_{f, \text { eff }}^{\prime}\right)}\right) \\
& =\frac{\left\langle O e^{-\left(S_{f, \text { eff }}-S_{f, \text { eff }}^{\prime}\right)^{\prime}}\right\rangle^{\prime}}{\left\langle e^{-\left(S_{f, \text { eff }}-S_{f, \text { eff }}^{\prime}\right)}\right\rangle^{\prime}}
\end{aligned}
$$

Twisted mass reweighting

Want a reweighting factor with little fluctuation

Proposal by Lüscher \& Palombi

$$
\operatorname{det} Q^{2} \rightarrow\left\{\begin{array}{l}
\operatorname{det}\left(Q^{2}+\mu^{2}\right) \\
\operatorname{det} \frac{\left(Q^{2}+\mu^{2}\right)^{2}}{Q^{2}+2 \mu^{2}}
\end{array}\right.
$$

Reweighting factor

$$
\operatorname{det} X^{-1} \rightarrow \begin{cases}\operatorname{det}\left(1+\frac{\mu^{2}}{Q^{2}}\right) & =\prod_{\lambda}\left(1+\frac{\mu^{2}}{\lambda^{2}}\right) \\ \operatorname{det}\left(1+\frac{\mu^{2}}{Q^{2}} \frac{\left(Q^{2}+\mu^{2}\right)}{Q^{2}+2 \mu^{2}}\right) & =\prod_{\lambda}\left(1+\frac{\mu^{4}}{\lambda^{4}}\right)\end{cases}
$$

Second term less sensitive to UV contribution.

Example

Lüscher, Schaefer' 12

Summary

Fermion action $-\operatorname{tr} \log D$ cannot be simulated directly.

Use pseudofermions together with matrix factorization
Several factorizations lead to working setups.
Need of solving the Dirac equation in each force evaluation.

Solving the Dirac equation

The solution of the Dirac equation

$$
D \psi=\phi
$$

is the most costly part of lattice simulations including dynamical fermions.

Dirac operator D can be viewed as a matrix acting in $\mathbb{C}^{12 V}$
For Wilson, staggered and domain wall fermions this matrix is sparse.
\rightarrow
Application of D on vector scales $\propto V$.

Krylov space

Cayley-Hamilton theorem
The Krylov space \mathcal{K}_{n} of order n generated by a starting vector ϕ and a matrix D is

$$
\mathcal{K}_{n}(\boldsymbol{D}, \phi)=\operatorname{span}\left\{\phi, \boldsymbol{D} \phi, \ldots, D^{n-1} \phi\right\}
$$

Cayley-Hamilton theorem
The value of a function (also the inverse) of an $N \times N$ matrix can be constructed from its powers up to N.
\rightarrow Solution of Dirac equation is in \mathcal{K}_{N}.
This theorem is not of much practical help if N is in the millions.

Krylov space solvers

Use the Krylov space to iteratively construct the solution of the Dirac equation to a specified precision.

$$
D \psi=\phi
$$

The basic problem is that it is not practical to safe the Krylov space.

- too much memory would be needed
- Only up to $\mathcal{O}(20)$ vectors can be stored

Different algorithms make different choices on how may vectors to compute before restarting.

$$
\mathcal{K}_{n}(\boldsymbol{D}, \phi) \rightarrow \rho_{0} \rightarrow \mathcal{K}_{n}\left(\boldsymbol{D}, \rho_{0}\right) \rightarrow \rho_{1} \rightarrow \cdots
$$

Iterative improvement

$$
D \psi=\phi
$$

For a certain approximation $\tilde{\psi}$ you can define the residue

$$
\rho=\phi-\boldsymbol{D} \tilde{\psi}
$$

this ρ can be used as a new right hand side

$$
D \psi_{1}=\rho \quad \rightarrow \psi=\tilde{\psi}+\psi_{1}
$$

Used in

- Restarting iterative solvers
- Single precision acceleration
- Chronologically predicted solutions

Convergence criteria and accuracy

$$
D \psi=\phi
$$

The convergence of the algorithm will be tested using

$$
|\rho|=|\phi-\boldsymbol{D} \tilde{\psi}|<\epsilon|\phi|
$$

This deviates from the exact solution by at most

$$
|\tilde{\psi}-\psi|<\epsilon \kappa(D)|\psi|
$$

with $\kappa(\boldsymbol{D})$ the condition number

$$
\kappa(D)=\left|D \| D^{-1}\right|
$$

Condition number

For $\lambda_{\text {min }}, \lambda_{\text {max }}$ the smallest/largest EV of $D^{\dagger} D$

$$
\begin{aligned}
& \lambda_{\min } \propto m \\
& \lambda_{\min } \propto 1 / a
\end{aligned}
$$

Condition number $\kappa(\boldsymbol{D}) \propto(a m)^{-1}$.

The GCR algorithm

The Generalized Conjugate Residue algorithm constructs for each k the solution of the Dirac equation

$$
\psi_{1}, \psi_{2}, \psi_{3}, \ldots \psi_{k}, \ldots
$$

that minimizes the residue

$$
\rho_{k}=\phi-\boldsymbol{D} \psi_{k}
$$

This minimum is attained where $\boldsymbol{D} \psi_{k}$ is the orthogonal projection of ϕ to $D \mathcal{K}_{k}$.

The GCR algorithm

This orthogonal projection is simplified computing an orthonormalized basis χ_{i}

$$
D \mathcal{K}_{k}=\operatorname{span}\left\{\chi_{i}\right\} .
$$

Then the computation of the new residue -the orthogonal projection- is just

$$
\rho_{k}=\eta-\sum_{l=0}^{k-1} c_{l} \chi_{l} \quad \text { with } \quad c_{l}=\left(\chi_{l}, \eta\right)
$$

The GCR algorithm

At some point in the algorithm one thus has The orthonormal basis of $D \mathcal{K}_{k-1}$ and the residues

$$
\left\{\chi_{0}, \chi_{1}, \ldots, \chi_{k-1}\right\} \quad\left\{\rho_{0}, \rho_{1}, \ldots, \rho_{k-1}\right\}
$$

one constructs the current residue

$$
\rho_{k}=\eta-\sum_{l=0}^{k-1} c_{l} \chi_{l} \quad \text { with } \quad c_{l}=\left(\chi_{l}, \eta\right)
$$

and adds to the basis χ_{k}, the contibution of $D \rho_{k}$.
Compute the representation of the χ in terms of the $D \rho$.

$$
\chi_{k}=\sum_{j=0}^{k} a_{k j} D \rho_{j} \quad \text { with } \rho_{0}=\phi
$$

Computing the current solution

$$
\chi_{k}=\sum_{j=0}^{k} a_{k j} D \rho_{j}
$$

and

$$
\rho_{k}=\eta-\sum_{l=0}^{k-1} c_{l} \chi_{l} \quad \text { with } \quad c_{l}=\left(\chi_{l}, \eta\right)
$$

Putting everything together, we have

$$
D \psi_{k}=\sum_{l=0}^{k-1} c_{l} \chi_{l}=\sum_{l=0}^{k-1} c_{l} \sum_{j=0}^{l} a_{l j} D \rho_{j}
$$

Now we can divide by D and get the solution ψ_{k} in terms of the already computed residues.

$$
\psi_{k}=\sum_{l=0}^{k-1} c_{l} \sum_{j=0}^{l} a_{l j} \rho_{j}
$$

Convergence rate

The solution is constructed in the Krylov space \rightarrow the residue is a polynomial of D times source.

$$
\rho_{k}=p_{k}(\boldsymbol{D}) \phi
$$

The GCR algorithm minimizes the residue

$$
\left|\rho_{k}\right|=\min _{p}\left|p_{k}(\boldsymbol{D}) \phi\right| \leq \min _{p}\left|p_{k}(\boldsymbol{D})\right||\phi|
$$

Take diagonaliziable $D \rightarrow D=V \Lambda V^{-1}$, with Λ diagonal

$$
\left|p_{k}(D)\right|=\left|V p_{k}(\Lambda) V^{-1}\right| \leq \kappa(V)\left|p_{k}(\Lambda)\right|
$$

This leads to the inequality

$$
\left|\rho_{k}\right| \leq \kappa(V) \max _{\lambda \in \mathbb{D}}\left|p_{k}(\lambda)\right||\phi|
$$

Assumption is that spectrum is contained in a disk \mathbb{D} right of origin.

Convergence rate

$$
\left|\rho_{k}\right| \leq \kappa(V) \max _{\lambda \in \mathbb{D}}\left|p_{k}(\lambda)\right||\phi|
$$

Theory of polynomial approximations:
The optimal polynomial, for which the maximum is attained is

$$
p_{k}(\lambda)=\left(1-\frac{\lambda}{R+b}\right)^{k}
$$

R is radius of the disk, b the distance from origin.

$$
\left|\rho_{k}\right| \leq \kappa(V)\left(1-\frac{b}{R}\right)^{-k}|\phi|
$$

For $b \ll R$ this decays roughly exponentially $e^{-k \frac{b}{R}}$

GCR: Summary

Above, one iteration of the GCR has been described.
It requires to order k
$2 k$ spinor fields of storage.
k matrix vector products.
Typical is the computation 20-40 vectors.
Then perform a restart.

Preconditioning

At small quark masses, the condition number of D becomes large.

Many matrix-vector multiplications needed for solution.

Preconditioning

$$
L D R \psi^{\prime}=L \phi \quad \rightarrow \psi=R^{-1} \psi^{\prime}
$$

with L and R chosen such that $L D R$ is well conditioned.
Many variants of preconditioning.
A good preconditioning will work on low-mode part of spectrum.

Even-odd preconditioning

If the Dirac operator only connects nearest-neighbors, the lattice can be split in "even" and "odd" sites.

$$
D=\left(\begin{array}{ll}
D_{\mathrm{ee}} & D_{\mathrm{eo}} \\
D_{\mathrm{oe}} & D_{\mathrm{oo}}
\end{array}\right)
$$

and we can use the matrices L and R

$$
L=\left(\begin{array}{cc}
1 & -D_{\mathrm{eo}} D_{\mathrm{oo}}^{-1} \\
0 & 1
\end{array}\right) \quad R=\left(\begin{array}{cc}
1 & 0 \\
-D_{\mathrm{oo}}^{-1} D_{\mathrm{oe}} & 1
\end{array}\right)
$$

to get

$$
L D R=\left(\begin{array}{cc}
\hat{D} & 0 \\
0 & D_{\text {oo }}
\end{array}\right) \quad \text { with } \quad \hat{D}=D_{\mathrm{oo}}-D_{\mathrm{oe}} D_{\mathrm{ee}}^{-1} D_{\mathrm{eo}}
$$

\hat{D} is the Schur complement
\hat{D} has less than half the condition number of D.

Preconditioning

Even-odd is the prime example of "classical" preconditioning.
It is used in all simulations with next-nearest operators only.
Another example is SSOR.
Complicated to implement \rightarrow not used so frequently.
Their benefit is limited: they do not know about the physics.

For large quark masses, standard Krylov-space solvers + eo work fine.

Small quark masses: condition number $\propto a m$.
Need to take the IR physics into consideration to get more significant speed-up.

Deflation

When quark mass gets small

$$
\kappa \propto 1 /(a m)
$$

due to small eigenvalues with $\operatorname{Re} \lambda \approx m$.

Exact deflation with eigenvectors

Elimitate these eigenmodes from the Dirac equation.

$$
D \psi_{i}=\lambda_{i} \psi_{i}
$$

Projector on small eigenmodes ψ_{i}

$$
P=\sum_{i=1}^{N_{s}} \psi_{i} \psi_{i}^{\dagger}
$$

Using it, we can split the Dirac equation in two

$$
\begin{aligned}
D & =\left(\begin{array}{cc}
P D P & 0 \\
0 & (1-P) D(1-P)
\end{array}\right) \\
\Rightarrow D^{-1} & =\left(\begin{array}{cc}
\sum_{i=1}^{N_{s}} \frac{1}{\lambda_{i}} \psi_{i} \psi_{i}^{\dagger} & 0 \\
0 & {[(1-P) D(1-P)]^{-1}}
\end{array}\right)
\end{aligned}
$$

Discussion

$$
D^{-1}=\left(\begin{array}{cc}
\sum_{i=1}^{N_{s}} & \frac{1}{\lambda_{i}} \psi_{i} \psi_{i}^{\dagger} \\
0 & {[(1-P) \boldsymbol{D}(1-P)]^{-1}}
\end{array}\right)
$$

Reduction of condition number $\kappa \rightarrow\left|\frac{\lambda_{1}}{\lambda_{N_{s}+1}}\right| \kappa$
Efficient if small number of very small eigenvalues ϵ-regime calculations

Need to compute eigenvectors (can be set up with approximate vectors)

For constant effect need $N_{s} \propto V$ vectors.
In large volume, computation of a single eigenvector exceedingly expensive.

Summary

The solution to the Dirac equation is essential part of lattice computations with fermions.

Methods take advantage of the spasity of the Dirac matrix.
Matrix-Vector multiplications essential operation, is $\mathrm{O}(V)$.
Cost can be high for small quark masses
\rightarrow shrinking gap to origin
\rightarrow problem with exceptionally small eigenvalues
Need to find a physical solution to problem.

