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Infroduction

1 General idea of Markov Chain Monte Carlo

HMC algorithm — classical equations of motion

2 Integrators and Fermions

det — pseudofermions
— Need solution of Dirac equation

Hasenbusch factorization
Other fermion methods

3 Methods o solve the Dirac equation



Factorizations

Hasenbusch Hasenbusch’03

2 2 2
zQ 2 detQ2+M%
Q + 9 Q + 5

det @* = det - det(Q* + 1%y)

RHMC Kennedy, Horvath, Sint’99, Clark, Kennedy'07

N
det @* = [ ] det V@2
i=1

Domain decomposition Luscher ‘04

det Q = det leock detR
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Domain decompaosition

m Domain decomposition
— Divide the lattice in blocks

detD = det Dblock : detDR

m Do not update links connecting blocks
— longer autocorrelations
m Good for slow communication.

LGscher'04
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RHMC

To simulate non-degenerate flavors
detD = det(1, + Dyo) detD = det(1, + Dgo) - W - det R™1

R: rational approximation to (DiD)~1/2
W = det(DR)

Rational Zolotarov approximation

L ta)y+as)...(y+ag—1)
By = A a0 T as) . & + az)

validinrangee<y <1

Simulate with R = 1 — include R by reweighting
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(y+a)ly+as)...(y+ag.,_1)

Ryc(y)=A
’ (y +a2)(y +ag)...(v+az)
Zolotarev, range=[0.001,1], n=8
0.001
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=
N \VAVAVAVAVAVAVA!
x
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X

Shifts a; > 0 can be quite smalll, in example ~ 106,
Small shifts have small contributions.
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RHMC |l

Split approximation in several factors

L ta)y+as)...(y+az_1)

By = A )0 T as) . & + am)

b +an+as) (r+as). (v +as )
(y+az)ly+as) (y+as)...(v+azn)

Each factor on a single pseudo-fermion, e.g.,

i (y +as)(y +as)
2(y +as)(y + ar)

(y +a2)(y +aq)
(y +a1)(y +as)

p1+¢ P2

Srumc = S1+S2 = ¢!

Why?

Can use different solvers for different PF,
Separate expensive but small contributions
— larger fime scale
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Twisted mass reweighting

Wilson fermions: Dirac operator is not protected from zero
eigenvalues.

Sy = —tr logQ?

— action can become infinite
— field space separated in sectors

Consequences

m Thermalization difficult
m Problems with ergodicity
m Difficulties with numerical integration (spikes in forces)
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Twisted mass reweighting

Solution:

m Run with protected Dirac operator

m Correct in the measurement
Reweighting (Ferrenberg & Swendsen '82)

_ % / HdUi,“e‘Sg‘SﬂeffO[U]

7~ /HdUl e 58 5 (O[U]e_(sf’eff‘s?,eff)>

(Oe~ (St ett— Sf’eff)>

- <e_(Sf,eff_S;7eff)>/
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Twisted mass reweighting

Want a reweighting factor with little fluctuation

Proposal by Luscher & Palombi

det (Q? + 12
det @ — { ((?22+ﬂ2/;; )
det "5 =

Reweighting factor

[

2
N e e
2 2 2 4
det (1+ £ S2)) =TL(A+ %)

Second ferm less sensitive to UV confribution.
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LUscher, Schaefer' 12
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Summary
Fermion action —trlogD cannot be simulated directly.
Use pseudofermions fogether with matrix factorization
Several factorizations lead to working setups.

Need of solving the Dirac equation in each force
evaluation.
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Solving the Dirac equation

The solution of the Dirac equation
Dy=¢
is the most costly part of lattice simulations including
dynamical fermions.
Dirac operator D can be viewed as a matrix acting in C12V

For Wilson, staggered and domain wall fermions this martrix
is sparse.,

—

Application of D on vector scales « V.
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Krylov space

Cayley-Hamilton theorem

The Krylov space K, of order n generated by a starting
vector ¢ and a matrix D is

Kn(D,$) = span{¢,Dg, ..., D" ¢}
Cayley-Hamilton theorem

The value of a function (also the inverse) of an N x N
matrix can be constructed from its powers up to N.

— Solution of Dirac equation isin Cy.

This theorem is not of much practical help if N is in the millions.
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Krylov space solvers

Use the Krylov space to iteratively construct the solution of
the Dirac equation to a specified precision.

D =¢

The basic problem is that it is not practical to safe the
Krylov space.

e TOO much memory would be needed

e Only up to O(20) vectors can be stored

Different algorithms make different choices on how may
vectors fo compute before restarting.

,Cn(D7¢) — Po _’K:n(D7PO> — pP1—
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lterative improvement

Dy=¢
For a certain approximation ) you can define the residue
p=¢—Di

this p can be used as a new right hand side
Dir=p —¢=9¢+i1

Used in

e Restarting iterative solvers

¢ Single precision acceleration

e Chronologically predicted solutions

16/32



Convergence criteria and accuracy

Dy =¢
The convergence of the algorithm will be tested using

o = |¢ — D < e[¢|
This deviates from the exact solution by at most

[ —¥| < en(D)|¥|
with x(D) the condition number

k(D) = D||D"Y|
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N

FOI Amin. Amax The smallest/largest EV of DD
Amin X M
)‘min X l/a

Condition number x(D) o« (am)~1.
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The GCR algorithm

The Generalized Conjugate Residue algorithm constructs
for each k the solution of the Dirac equation

¢171/127¢3a- . '¢k7‘ ..
that minimizes the residue
pr = ¢ — Dy,

This minimum is attained where D v, is the orthogonal
projection of ¢ to DIKC.
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The GCR algorithm

This orthogonal projection is simplified computing an
orthonormalized basis y;

DK}, = span{y;}.
Then the computation of the new residue —the

orthogonal projection— is just

k-1
pp=n-> ax Wwith ¢=0un
=0
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The GCR algorithm

At some point in the algorithm one thus has
The orthonormal basis of DK, _; and the residues

{xo,x1,- s xe—1y  {po.p1,---sPp—1}

one constfructs the current residue
k-1
pp=n—Y_cxi With ¢ =(xn)
1=0

and adds fo the basis ;. the contibution of Dpy,.

Compute the representation of the y in terms of the Dp.

k
Xk = ZaijPj with pg = ¢
=0
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Computing the current solution

k
Xe =Y apDp;
j=0
and

k1
pp=n—Y cxi With ¢ =(xn)
1=0

Putting everything fogether, we have
k-1

-1 1
Dy, = ZCZ X1 = ZCZ Z%‘DPJ‘
=0 =0 j=0

Now we can divide by D and get the solution ¢, in terms
of the already computed residues.

k—1 l
U= e )
=0 =0
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Convergence rate

The solutfion is constructed in the Krylov space
— the residue is a polynomial of D times source.

pr =pr(D)d

The GCR algorithm minimizes the residue

| x| = miny |, (D)@ < miny, |pg(D)]|¢]
Take diagonaliziable D — D = VAV !, with A diagonal

pe(D)| = [VDr(M)V ] < w(V)|pe(A)]
This leads to the inequality

| < £(V)maxyep|pr(A)]|9]

Assumption is that spectrum is contained in a disk D right of

origin.
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Convergence rate

lpr] < K(V)maxep|pr (M) 9|

Theory of polynomial approximations:
The optimal polynomial, for which the maximum is
attained is

P = (- o)

R
R is radius of the disk, b /

b the distance from origin.

b, _
ol < R(V)(1 = 2) 719l
For b <« R this decays roughly exponentially ek z
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Above, one iteration of the GCR has been described.
It requires to order k

2k spinor fields of storage.
k matrix vector products.

Typical is the computation 20-40 vectors.

Then perform a restart.
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Preconditioning

At small quark masses, the condition number of D
becomes large.

Many matrix-vector multiplications needed for solution.

Preconditioning

LDRy' = L¢ — ¢ =Ry

with L and R chosen such that L D R is well condifioned.
Many variants of preconditioning.

A good preconditioning will work on low-mode part of
spectrum.
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Even-odd preconditioning

If the Dirac operator only connects nearest-neighbors,

the lattice can be split in “*even” and “odd” sites.

Dee D
D= ee eo
(D oe D oo>

and we can use the matrices L and R

(1 —DeD3l /1 o
L= (o 1 E={_p.ip,. 1
to get
or— (P O With D = Deg — DoeDolDeo
0 Do

D s the Schur complement
D has less than half the condition number of D.
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Preconditioning

Even-odd is the prime example of “classical”
preconditioning.
It is used in all simulations with next-nearest operators only.

Another example is SSOR.
Complicated to implement — not used so frequently.

Their benefit is limited: they do not know about the
physics.

For large quark masses, standard Krylov-space solvers +
eo work fine.

Small quark masses: condition number « am.
Need to take the IR physics intfo consideration to get more
significant speed-up.
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When quark mass gets small
Kk x 1/(am)

due to small eigenvalues with ReA ~ m.
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Exact deflation with eigenvectors

Elimitate these eigenmodes from the Dirac equation.

Dy = N

Projector on small eigenmodes ;

N;
P=3 i)
i=1
Using it, we can split the Dirac equation in two

b= (ng 1P —P>>

L1 (X L] 0
iDl_( ' [(1—P)D(1—P)]—1>
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Discussion

Dl — Z?ﬁl ,\lﬂ/’i wiT 0
0 [(1-P)D(1-P) !
A1
AN +1

Efficient if smmall number of very small eigenvalues
e-regime calculations

Reduction of condition number xk — |

|k

Need to compute eigenvectors (can be set up with
approximate vectors)

For constant effect need N, o« V vectors.

In large volume, computation of a single eigenvector
exceedingly expensive.
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Summary
The solution to the Dirac equation is essential part of
lattice computations with fermions.

Methods take advantage of the spasity of the Dirac
matrix.
Matrix-Vector multiplications essential operation, is O(V).

Cost can be high for small quark masses
— shrinking gap to origin
— problem with exceptionally small eigenvalues

Need to find a physical solution to problem.
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