
Algorithms for Lattice QCD III

Stefan Schaefer

NIC, DESY

Lattice Gauge Theory School

1 / 32

Introduction

1 General idea of Markov Chain Monte Carlo

HMC algorithm→ classical equations of motion

2 Integrators and Fermions

det→ pseudofermions
→ Need solution of Dirac equation

Hasenbusch factorization

Other fermion methods

3 Methods to solve the Dirac equation

2 / 32

Factorizations

Hasenbusch Hasenbusch’03

det Q2 = det
Q2

Q2 + µ2
1

det
Q2 + µ2

1
Q2 + µ2

2
· · ·det(Q2 + µ2

N)

RHMC Kennedy, Horvath, Sint’99, Clark, Kennedy’07

det Q2 =
N∏

i=1

det N
√

Q2

Domain decomposition Lüscher ’04

det Q = det Qblock det R

3 / 32

Domain decomposition

Lüscher’04

Domain decomposition
→ Divide the lattice in blocks

det D = det Dblock · det DR

Do not update links connecting blocks
→ longer autocorrelations
Good for slow communication.

4 / 32

RHMC

To simulate non-degenerate flavors

det D = det(1e + Doo) det D̂ = det(1e + Doo) ·W · det R−1

R: rational approximation to (D̂†D̂)−1/2

W = det(D̂R)

Rational Zolotarov approximation

Rn,ε(y) = A
(y + a1)(y + a3) . . . (y + a2n−1)
(y + a2)(y + a4) . . . (y + a2n)

valid in range ε ≤ y ≤ 1

Simulate with R = 1→ include R by reweighting

5 / 32

Zolotarev rational approximation

Rn,ε(y) = A
(y + a1)(y + a3) . . . (y + a2n−1)
(y + a2)(y + a4) . . . (y + a2n)

-0.001

-0.0005

 0

 0.0005

 0.001

 0.001 0.01 0.1 1

x
R

(x
)

x

Zolotarev, range=[0.001,1], n=8

Shifts ai > 0 can be quite small, in example ∼ 10−6.
Small shifts have small contributions.

6 / 32

RHMC II

Split approximation in several factors

Rn,ε(y) = A
(y + a1)(y + a3) . . . (y + a2n−1)
(y + a2)(y + a4) . . . (y + a2n)

= A
(y + a1)(y + a3)
(y + a2)(y + a4)

(y + a5) . . . (y + a2n−1)
(y + a5) . . . (y + a2n)

Each factor on a single pseudo-fermion, e.g.,

SRHMC = S1+S2 = φ†1
(y + a2)(y + a4)
(y + a1)(y + a3)

φ1+φ†2
(y + a6)(y + a8)
(y + a5)(y + a7)

φ2

Why?
Can use different solvers for different PF.
Separate expensive but small contributions
→ larger time scale

7 / 32

Twisted mass reweighting

Wilson fermions: Dirac operator is not protected from zero
eigenvalues.

Sf = −tr logQ2

→ action can become infinite
→ field space separated in sectors

Consequences

Thermalization difficult
Problems with ergodicity
Difficulties with numerical integration (spikes in forces)

8 / 32

Twisted mass reweighting

Solution:
Run with protected Dirac operator
Correct in the measurement

Reweighting (Ferrenberg & Swendsen ’82)

〈O〉 =
1
Z

∫ ∏
i,µ

dUi,µe−Sg−Sf ,effO[U]

=
Z′

Z
× 1

Z′

∫ ∏
i,µ

dUi,µe−Sg−S′
f ,eff

(
O[U]e−(Sf ,eff−S′

f ,eff)
)

=
〈Oe−(Sf ,eff−S′

f ,eff)〉′

〈e−(Sf ,eff−S′
f ,eff)〉′

9 / 32

Twisted mass reweighting

Want a reweighting factor with little fluctuation

Proposal by Lüscher & Palombi

det Q2 →

{
det (Q2 + µ2)

det (Q2+µ2)2

Q2+2µ2

Reweighting factor

det X−1 →

{
det (1 + µ2

Q2) =
∏
λ(1 + µ2

λ2)

det (1 + µ2

Q2
(Q2+µ2)
Q2+2µ2) =

∏
λ(1 + µ4

λ4)

Second term less sensitive to UV contribution.

10 / 32

Example

Lüscher, Schaefer’12

0

0.5

1.0

1.5
D6 E8

I1 I2

0 10 20 30 40 50 60 70 80 90
0

0.5

1.0

1.5

0 10 20 30 40 50 60 70 80 90

11 / 32

Summary

Fermion action −tr logD cannot be simulated directly.

Use pseudofermions together with matrix factorization

Several factorizations lead to working setups.

Need of solving the Dirac equation in each force
evaluation.

12 / 32

Solving the Dirac equation

The solution of the Dirac equation

Dψ = φ

is the most costly part of lattice simulations including
dynamical fermions.

Dirac operator D can be viewed as a matrix acting in C12V

For Wilson, staggered and domain wall fermions this matrix
is sparse.
→
Application of D on vector scales ∝ V.

13 / 32

Krylov space

Cayley-Hamilton theorem

The Krylov space Kn of order n generated by a starting
vector φ and a matrix D is

Kn(D, φ) = span
{
φ,Dφ, . . . ,Dn−1φ

}
Cayley-Hamilton theorem

The value of a function (also the inverse) of an N ×N
matrix can be constructed from its powers up to N.

→ Solution of Dirac equation is in KN.

This theorem is not of much practical help if N is in the millions.

14 / 32

Krylov space solvers

Use the Krylov space to iteratively construct the solution of
the Dirac equation to a specified precision.

Dψ = φ

The basic problem is that it is not practical to safe the
Krylov space.
• too much memory would be needed
• Only up to O(20) vectors can be stored

Different algorithms make different choices on how may
vectors to compute before restarting.

Kn(D, φ)→ ρ0 → Kn(D, ρ0)→ ρ1 → · · ·

15 / 32

Iterative improvement

Dψ = φ

For a certain approximation ψ̃ you can define the residue

ρ = φ−Dψ̃

this ρ can be used as a new right hand side

Dψ1 = ρ → ψ = ψ̃ + ψ1

Used in
• Restarting iterative solvers
• Single precision acceleration
• Chronologically predicted solutions

16 / 32

Convergence criteria and accuracy

Dψ = φ

The convergence of the algorithm will be tested using

|ρ| = |φ−Dψ̃| < ε|φ|

This deviates from the exact solution by at most

|ψ̃ − ψ| < εκ(D)|ψ|

with κ(D) the condition number

κ(D) = |D||D−1|

17 / 32

Condition number

2/am

For λmin, λmax the smallest/largest EV of D†D

λmin ∝ m
λmin ∝ 1/a

Condition number κ(D) ∝ (am)−1.
18 / 32

The GCR algorithm

The Generalized Conjugate Residue algorithm constructs
for each k the solution of the Dirac equation

ψ1, ψ2, ψ3, . . . ψk, . . .

that minimizes the residue

ρk = φ−Dψk

This minimum is attained where Dψk is the orthogonal
projection of φ to DKk.

φ

0
DK k

19 / 32

The GCR algorithm

This orthogonal projection is simplified computing an
orthonormalized basis χi

DKk = span{χi}.

Then the computation of the new residue —the
orthogonal projection— is just

ρk = η −
k−1∑
l=0

cl χl with cl = (χl, η)

20 / 32

The GCR algorithm

At some point in the algorithm one thus has
The orthonormal basis of DKk−1 and the residues

{χ0, χ1, . . . , χk−1} {ρ0, ρ1, . . . , ρk−1}

one constructs the current residue

ρk = η −
k−1∑
l=0

cl χl with cl = (χl, η)

and adds to the basis χk, the contibution of Dρk.

Compute the representation of the χ in terms of the Dρ.

χk =
k∑

j=0

akjDρj with ρ0 = φ

21 / 32

Computing the current solution

χk =
k∑

j=0

akjDρj

and

ρk = η −
k−1∑
l=0

cl χl with cl = (χl, η)

Putting everything together, we have

Dψk =
k−1∑
l=0

cl χl =
k−1∑
l=0

cl

l∑
j=0

aljDρj

Now we can divide by D and get the solution ψk in terms
of the already computed residues.

ψk =
k−1∑
l=0

cl

l∑
j=0

aljρj

22 / 32

Convergence rate

The solution is constructed in the Krylov space
→ the residue is a polynomial of D times source.

ρk = pk(D)φ

The GCR algorithm minimizes the residue

|ρk| = minp|pk(D)φ| ≤ minp|pk(D)||φ|

Take diagonaliziable D→ D = VΛV−1, with Λ diagonal

|pk(D)| = |Vpk(Λ)V−1| ≤ κ(V)|pk(Λ)|

This leads to the inequality

|ρk| ≤ κ(V)maxλ∈D|pk(λ)||φ|

Assumption is that spectrum is contained in a disk D right of
origin.

23 / 32

Convergence rate

|ρk| ≤ κ(V)maxλ∈D|pk(λ)||φ|

Theory of polynomial approximations:
The optimal polynomial, for which the maximum is
attained is

pk(λ) = (1− λ

R + b
)k

R is radius of the disk,
b the distance from origin.

|ρk| ≤ κ(V)(1− b
R

)−k|φ|

R
b

For b� R this decays roughly exponentially e−k b
R

24 / 32

GCR: Summary

Above, one iteration of the GCR has been described.

It requires to order k

2k spinor fields of storage.
k matrix vector products.

Typical is the computation 20–40 vectors.

Then perform a restart.

25 / 32

Preconditioning

At small quark masses, the condition number of D
becomes large.

Many matrix-vector multiplications needed for solution.

Preconditioning

LDRψ′ = Lφ → ψ = R−1ψ′

with L and R chosen such that L D R is well conditioned.

Many variants of preconditioning.

A good preconditioning will work on low-mode part of
spectrum.

26 / 32

Even-odd preconditioning

If the Dirac operator only connects nearest-neighbors,
the lattice can be split in “even” and “odd” sites.

D =
(

Dee Deo
Doe Doo

)
and we can use the matrices L and R

L =
(

1 −DeoD−1
oo

0 1

)
R =

(
1 0

−D−1
oo Doe 1

)
to get

LDR =
(

D̂ 0
0 Doo

)
with D̂ = Doo −DoeD−1

ee Deo

D̂ is the Schur complement
D̂ has less than half the condition number of D.

27 / 32

Preconditioning

Even-odd is the prime example of “classical”
preconditioning.
It is used in all simulations with next-nearest operators only.

Another example is SSOR.
Complicated to implement→ not used so frequently.

Their benefit is limited: they do not know about the
physics.

For large quark masses, standard Krylov-space solvers +
eo work fine.

Small quark masses: condition number ∝ am.

Need to take the IR physics into consideration to get more
significant speed-up.

28 / 32

Deflation

2/am

When quark mass gets small

κ ∝ 1/(am)

due to small eigenvalues with Reλ ≈ m.

29 / 32

Exact deflation with eigenvectors

Elimitate these eigenmodes from the Dirac equation.

Dψi = λi ψi

Projector on small eigenmodes ψi

P =
Ns∑
i=1

ψi ψ
†
i

Using it, we can split the Dirac equation in two

D =
(

P D P 0
0 (1− P)D(1− P)

)
⇒ D−1 =

(∑Ns
i=1

1
λi
ψi ψ

†
i 0

0 [(1− P)D(1− P)]−1

)

30 / 32

Discussion

D−1 =

(∑Ns
i=1

1
λi
ψi ψ

†
i 0

0 [(1− P)D(1− P)]−1

)
Reduction of condition number κ→ | λ1

λNs+1
|κ

Efficient if small number of very small eigenvalues
ε-regime calculations

Need to compute eigenvectors (can be set up with
approximate vectors)

For constant effect need Ns ∝ V vectors.

In large volume, computation of a single eigenvector
exceedingly expensive.

31 / 32

Summary

The solution to the Dirac equation is essential part of
lattice computations with fermions.

Methods take advantage of the spasity of the Dirac
matrix.
Matrix-Vector multiplications essential operation, is O(V).

Cost can be high for small quark masses
→ shrinking gap to origin
→ problem with exceptionally small eigenvalues

Need to find a physical solution to problem.

32 / 32

