Algorithms for lattice QCD II

Stefan Schaefer

NIC, DESY

December 3rd, 2013

HMC

Momentum Heatbath

Refresh momenta π (Gaussian random numbers)

Molecular Dynamics

Solve numerically MD equations for some MC time τ (trajectory) deriving from Hamiltonian $H=\frac{1}{2}(\pi, \pi)+S[U]$.

Acceptance Step

Correcting for inaccuracies in integration.

Numerical integration

$$
\dot{U}_{x, \mu}=\pi_{x, \mu} U_{x, \mu} \quad \dot{\pi}_{x, \mu}=-F_{x, \mu}
$$

Splitting methods

$$
H=\frac{1}{2}(\pi, \pi)+S[U]=T+S
$$

■ Eom for each part T, S can be solved exactly
\rightarrow symplectic
$\square T$ defines T_{U}

$$
U_{x, \mu}(\tau)=e^{\pi \tau} U_{x, \mu}(0), \quad \pi(\tau)=\pi(0)
$$

■ S defines T_{p}

$$
U_{x, \mu}(\tau)=U_{x, \mu}(0), \quad \pi(\tau)=\pi(0)-\tau F
$$

Splitting methods

$$
\begin{array}{rlll}
T_{U} & =e^{\epsilon \hat{T}}: & U_{x, \mu}(\epsilon)=e^{\pi \epsilon} U_{x, \mu}(0), & \pi(\epsilon)=\pi(0) \\
T_{p} & =e^{\hat{\Theta} \hat{S}}: & U_{x, \mu}(\epsilon)=U_{x, \mu}(0), & \pi(\epsilon)=\pi(0)-\epsilon F
\end{array}
$$

Can be put together in any order.
Legal integrator:
Time steps of T_{U} and T_{p} sum up to 1 .
Symmetric integrator
\rightarrow Integration error automatically $\mathrm{O}\left(\epsilon^{2}\right)$
Example: leapfrog ($\epsilon=\tau / N$)

$$
T=\left(T_{U}(\epsilon / 2) T_{p}(\epsilon) T_{U}(\epsilon / 2)\right)^{N}
$$

Omelyan \& Co

Leapfrog has been long-time workhorse Robust, but in general not optimal.

Easy improvement without detailed knowledge of physics system.

Seminal paper Omelyan, Mrygold, Folk, 2003 Introduce reduandant parameters and optimize

$$
T=\left[T_{p}(\epsilon \lambda) T_{U}(\epsilon / 2) T_{p}\left(\epsilon(1-2 \lambda) T_{U}(\epsilon / 2) T_{p}(\epsilon \lambda)\right]^{N / 2}\right.
$$

$\lambda=0.19$ performs roughly $2 \times$ better than leapfrog .
The paper contains O (100) integrators.

Optimizing integrators

Exact time evolution operator

$$
e^{\tau \frac{d}{d t}}=e^{\tau \hat{H}} \quad \text { with } \quad \hat{H}=-\frac{\delta S}{\delta U} \frac{\partial}{\partial U}-\frac{\delta T}{\delta \pi} \frac{\partial}{\partial \pi}=\hat{S}+\hat{T}
$$

with $T(\pi)=(\pi, \pi)$ and $S[U]$ the action.
\hat{H} is the Hamiltonian vector field.
Leap-frog integrator

$$
\begin{aligned}
& {\left[e^{\epsilon / 2 \hat{S}} e^{\epsilon \hat{T}} e^{\epsilon / 2} \hat{S}^{\tau / \epsilon}\right.} \\
= & \exp \left\{(\hat{S}+\hat{T}) \epsilon-\frac{\epsilon^{3}}{24}([\hat{S},[\hat{S}, \hat{T}]]+2[\hat{T},[\hat{S}, \hat{T}]])\right\}^{\tau / \epsilon} \\
= & \exp \left\{(\hat{S}+\hat{T}) \tau-\frac{\tau \epsilon^{2}}{24}([\hat{S},[\hat{S}, \hat{T}]]+2[\hat{T},[\hat{S}, \hat{T}]])\right\}
\end{aligned}
$$

Baker-Campbell-Hausdorff formula has been used. see series of paper by Clark and Kennedy

Shadow Hamiltonian

For each symplectic integrator, there is the conserved shadow Hamiltonian

Can be constructed by a power series Commutators \rightarrow Poisson brackets

$$
\begin{aligned}
\tilde{H} & =H+\epsilon^{2}\left(c_{1}\{S,\{S, T\}\}+c_{2}\{T,\{S, T\}\}\right) \\
& =H+\epsilon^{2}\left(c_{1} \partial_{a} S \partial_{a} S-c_{2} \pi_{a} \pi_{b} \partial_{a} \partial_{b} S\right) \ldots
\end{aligned}
$$

Convergence of the series?
c_{1} and c_{2} depend only on the integrator
For a long time, it has been believed that what matters is the size of

$$
\delta H=\tilde{H}-H
$$

Optimizing integrators

At the beginning of the trajectory

$$
\begin{equation*}
H_{1}=\frac{1}{2}\left(\pi_{1}, \pi_{1}\right)+S\left[U_{1}\right] \quad \tilde{H}_{1}=H_{1}+\delta H_{1} \tag{1}
\end{equation*}
$$

At the end of the trajectory

$$
\begin{equation*}
H_{2}=\frac{1}{2}\left(\pi_{2}, \pi_{2}\right)+S\left[U_{2}\right] \quad \tilde{H}_{2}=H_{2}+\delta H_{2} \tag{2}
\end{equation*}
$$

During the trajectory, \tilde{H} is conserved. $\tilde{H}=\tilde{H}_{1}=\tilde{H}_{2}$

$$
\Delta H=H_{2}-H_{1}=\left(H_{2}-\tilde{H}\right)-\left(H_{2}-\tilde{H}\right)=\delta H_{2}-\delta H_{1}
$$

What matters is the fluctuation of δH.

Example

From Clark, Joo, Kennedy, Silva, 1108. 1828

Multiple time scales

In the HMC, different forces have vastly different size.

$$
F_{g} \gg F_{\text {ferm }, U V} \gg F_{\text {ferm }, I R}
$$

This is the oppostite ordering of the cost of their computation.

Multiple time scale integrators have been proposed.

The idea is to integrate "large forces" on a finer time scale - exacter.

Multiple time scales

$$
\begin{aligned}
& T_{\pi}(\epsilon / 2) T_{U}(\epsilon) T_{\pi}(\epsilon / 2) \\
& \rightarrow T_{\pi, 1}(\epsilon / 2)\left[T_{\pi, 2}(\epsilon / 2 m) T_{U}(\epsilon / m) T_{\pi, 2}(\epsilon / 2 m)\right]^{m} \boldsymbol{T}_{\pi, 1}(\epsilon / 2)
\end{aligned}
$$

Experimental finding: it never works as well as expected.
Can be understood by Shadow Hamiltonian

$$
\begin{aligned}
\tilde{H} & =H+\left[c_{1}\left(F_{1}, F_{1}\right)+c_{2} \pi^{a} \pi^{b} \boldsymbol{S}_{1}^{(a b)}+c_{2}\left(F_{1}, F_{2}\right)\right. \\
& \left.+\frac{1}{m^{2}}\left(c_{2}\left(F_{2}, F_{2}\right)+c_{2} \pi^{a} \pi^{b} \boldsymbol{S}_{2}^{(a b)}\right)\right]
\end{aligned}
$$

Interference term between "large" and "small" force not suppressed by relative times scale m.

Summary: Integrators

Integrators have contributed to improvement in algorithms.

Typical gains are factor two. No miracles to be expected.

Difficulty separating IR from UV.
Optimization by measurement is possible.

Fermions
 Formulation of the theory

Fermions

Textbook verions contains Grassmann fields ψ and $\bar{\psi}$

$$
Z=\int \prod_{i} d \psi_{i} d \bar{\psi} \prod_{i, \mu} d U_{i, \mu} e^{-S_{g}-\sum_{f} \bar{\psi}_{f} D\left(m_{f}\right) \psi_{f}}
$$

We integrate out the fermions and get the quark determinant

$$
Z=\int \prod_{i, \mu} d U_{i, \mu} \prod_{f} \operatorname{det} D\left(m_{f}\right) e^{-S_{g}}
$$

Determinant not usable in large volume situation \rightarrow too complicated/expensive to compute

Fermions in simulations

Ideally, we would want to use

$$
S_{\mathrm{ferm}}=-\sum_{i=1}^{N_{f}} \operatorname{tr} \log D\left(m_{i}\right)=-\sum_{i=1}^{N_{f}} \log \operatorname{det} D\left(m_{i}\right)
$$

Unfortunately, the determinant of a $N \times N$ matrix is virtually impossible to compute for large N.

Need $\mathrm{O}\left(N^{2}\right)$ operations.
Large memory requirement.
Is numerically extremely unstable.
\Rightarrow
Need algorithm with is based on solutions of linear equations.

Pseudofermions

Pseudofermions Petcher, Weingarten'81

$$
\operatorname{det} Q^{2} \propto \int[\mathbf{d} \phi]\left[\mathbf{d} \phi^{\dagger}\right] e^{-\left(\phi, Q^{-2} \phi\right)}, \quad Q=\gamma_{5} D
$$

Pseudofermion field ϕ can be easily generated:
■ Generate Gaussian complex-valued quark field η

$$
P[\eta] \propto e^{-(\eta, \eta)}
$$

- Multiply with Q

$$
\phi=Q \eta
$$

Even-odd preconditioning

The Wilson Dirac operator connects only neighboring sites.
Label them "even" and "odd".

$$
D=\left(\begin{array}{ll}
D_{e e} & D_{e o} \\
D_{o e} & D_{o o}
\end{array}\right)
$$

$D_{o o}$ and $D_{e e}$ are site-diagonal matrices.

Even-odd preconditioning

Matrix identity

$$
\begin{aligned}
& \left(\begin{array}{ll}
D_{e e} & D_{e o} \\
D_{o e} & D_{o o}
\end{array}\right)= \\
& \left(\begin{array}{cc}
1 & D_{e o} D_{o o}^{-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\left(D_{e e}-D_{e o} D_{o o}^{-1} D_{o e}\right) & 0 \\
0 & D_{o o}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
D_{o o}^{-1} D_{o e} & 1
\end{array}\right)
\end{aligned}
$$

For the determinant this means

$$
\operatorname{det} D=\operatorname{det} D_{o o} \operatorname{det}\left(D_{e e}-D_{e o} D_{o o}^{-1} D_{o e}\right) \equiv \operatorname{det} D_{o o} \operatorname{det} \hat{D}
$$

with \hat{D} the Schur complement.
In the following, I will mostly write D or $\boldsymbol{Q}=\gamma_{5} D$.
In practice, this frequently means \hat{D} or \hat{Q}.

Partition function

Include pseudofermions in path integral.

$$
Z=\int[d U][d \pi][d \phi]\left[d \phi^{\dagger}\right] e^{-\frac{1}{2}(\pi, \pi)-S_{g}[U]-\left(\phi, \frac{1}{Q^{2}} \phi\right)+2 \log \operatorname{det} Q_{o o}}
$$

S_{g} : gauge action
effective fermion action for $N_{f}=2$.

$$
S_{f, e f f}=\left(\phi, \frac{1}{\hat{Q}^{2}} \phi\right)-2 \log \operatorname{det} Q_{o o}
$$

HMC

Momentum and pseudofermion Heatbath

Refresh momenta π
Refresh pseudofermions $\phi \rightarrow$ kept fixed during trajectory

Molecular Dynamics

Solve numerically MD equations for some MC time τ (trajectory) deriving from Hamiltonian $H=\frac{1}{2}(\pi, \pi)+S[U]$.

Acceptance Step

Correcting for inaccuracies in integration.

Problems

Pseudofermions

$$
\operatorname{det} Q^{2} \propto \int \mathrm{~d} \phi e^{-\left(\phi, Q^{-2} \phi\right)}
$$

- Works only for pairs of degenerate flavors Solution: take square root \rightarrow PHMC, RHMC
■ Force evaluation expensive: 2 solutions of Dirac eq.

$$
F_{\mathrm{pf}}=-\left(\phi, Q^{-2} \delta Q Q^{-1} \phi\right)+\text { h.c. }
$$

- Seems somewhat unnatural Start with manifestly local action
\rightarrow quite non-local expression

Berlin Wall

Status 2000 Quarks $16 \times$ heavier than in nature.
No perspective even with 2010 computers.
Coarse lattices $a \approx 0.1 \mathrm{fm}$ (the typical length scale is 1 fm)

Cost of a simulation (Ukawa Lattice 2001)

$$
\text { Cost }=C\left[\frac{\# \text { conf }}{1000}\right] \cdot\left[\frac{m_{q}}{16 m_{\mathrm{phys}}}\right]^{-3} \cdot\left[\frac{L}{3 \mathrm{fm}}\right]^{5} \cdot\left[\frac{a}{0.1 \mathrm{fm}}\right]^{-7}
$$

$C \approx 2.8$ Tflops year

Fermions

Pseudofermions

$$
\operatorname{det} Q^{2} \propto \int \mathrm{~d} \phi e^{-\left(\phi, Q^{-2} \phi\right)}
$$

■ HMC + single pseudofermion action not successful

- Compare

$$
F_{\mathrm{pf}}=\delta\left(\phi, Q^{-2} \phi\right) \quad \text { and } \quad F_{\mathrm{ex}}=-\delta \operatorname{tr} \log Q^{2}
$$

- F_{pf} is "stochastic estimate" of $F_{\text {ex }}$

At beginning of the trajectory $\left\langle F_{\mathrm{pf}}\right\rangle_{\phi}=F_{\text {ex }}$

- Very large fluctuations in $F_{\text {pf }}$

$$
\left|F_{\mathrm{pf}}\right| \gg\left|F_{\mathrm{ex}}\right|
$$

Fermions
 Modifications

Determinant Splitting

Insight

■ Need better estimate of determinant.

- Frequency splitting.

Mass preconditioning Hasenbusch'01, Hasenbusch,Jansen'03

$$
\operatorname{det} Q^{2}=\operatorname{det} \frac{Q^{2}}{Q^{2}+\mu^{2}} \operatorname{det}\left(Q^{2}+\mu^{2}\right)
$$

■ Each determinant represented by pseudo-fermion

- "Pauli-Villars" for fermion force

■ more intermediate $\mu \rightarrow$ Noise reduction in force.

- success depends on choice of μ. Urbach et al'04

Numerical examples

Action

■ $N_{\mathrm{f}}=2+1 \mathrm{NP}$ improved Wilson fermions

- Iwasaki gauge action

■ 64×32^{3} lattice with $a=0.09 \mathrm{fm}$

- studied extensively by PACS-CS Aoki et al'09,'10
- $m_{\pi}=200 \mathrm{MeV}$

■ $m_{\pi} L=3$

Algorithm

■ Reweighting to avoid stability problems.
■ Generated with public openQCD code. http://cern.ch/luscher/openQCD

Effect of determinant factorization

Forces for light quark, 20 configurations. $\mu_{1}=0.05, \mu_{2}=0.5$

■ Fluctuations of force not much reduced.
■ Fluctuations in norm squared of force: Spread reduced by more than factor 100.
(Different scale!)

Understanding the improvement

Framework CLARK, Joo, Kennedy, Silva' 11

■ Shadow Hamiltonian of symplectic integrators

$$
\tilde{H}=H+\left(c_{1} \partial_{a} S \partial_{a} S-c_{2} \pi_{a} \pi_{b} \partial_{a} \partial_{b} \boldsymbol{S}\right) \delta \tau^{2}+\ldots
$$

- Large cancellation between the two terms \rightarrow potential for optimization.
- 2nd order minimum norm integrators: minimum of $c_{1}^{2}+c_{2}^{2}$

Omelyan, Mrygold, Folk’03

- Symplectic integrators profit from reduced fluctuations in norm of force.

Numerical examples

- $\Delta H=\tilde{H}-H$, fermions only.
\square Second order min. norm Omelyan integrator.
- Much larger step-size possible.

