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HMC

Momentum Heatbath
Refresh momenta = (Gaussian random numbers)

Molecular Dynamics

Solve numerically MD equations for some MC time 7
(frajectory) deriving from Hamiltonian H = 4 (r, ) + S[U].

(, U',

(T V\/

Acceptance Step

Correcting for inaccuracies in integration.
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Numerical infegration

vaﬂ - ﬂvavau 7:"x,,u = _Fx,#

Splitting methods

H:%(?T,W)—{—S[U] =T+8S

m Fom for each part T', S can be solved exactly
— symplectic
m T defines Ty
Uru(1) = €U u(0),  7(7) =n(0)
m S defines T,

Uru(1) = Urp(0), 7(7) =m(0) —7F
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Splitting methods

Ty=eT:  Ugule) =e™Upn(0), m(e)
Tp=eS:  Ueu(e)=Upu(0), ()
Can be put together in any order.

Legal integrator:
Time steps of Ty and T, sum up to 1.

Symmetric integrator
—Integration error automatically O(e?)

Example: leapfrog (e = 7/N)
T = (Ty(e/2)Ty(e) Ty (e/2))N

(, U’

(1:[9./’—\‘\'_/
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Omelyan & Co

Leapfrog has been long-time workhorse
Robust, but in general not optimal.

Easy improvement without detailed knowledge of physics
system.

Seminal paper Omelyan, Mrygold, Folk, 2003
Introduce reduandant parameters and optimize

T = [Ty(eN)Ty(e/2)Tp(e(1 — 2\) Ty (e/2) Ty (eN)NV/2
A = 0.19 performs roughly 2x better than leapfrog.
The paper contains O(100) integrators.
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Optimizing integrators

Exact time evolution operator

N )
en=e with  H = —5550 ~ 5ror

with T'(r) = (=, 7) and S[U] the action.
H is the Hamiltonian vector field.

Leap-frog integrator

[ee/ZS'ee Tee/ZS]T/e

=S+T

Baker-Campbell-Hausdorff formula has been used.

see series of paper by Clark and Kennedy



Shadow Hamilfonian
For each symplectic integrator, there is the
conserved shadow Hamiltonian

Can be constructed by a power series
Commutators — Poisson brackets

H=H+(c1{S,{S,T}} + c2{T,{S,T}})
= H + €%(c1 0280, — co mqmp0,0p8) . . .
Convergence of the series?

¢1 and ¢y depend only on the integrator

For a long time, it has been believed that what matters is
the size of

OH=H -H
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Optimizing integrators
At the beginning of the trajectory

1 5
H1=§(7T1,7T1)+S[U1] H, =H; +¢H;

At the end of the trajectory

1 N
H2=§(7T2,7r2)+S[U2] Hy =Hjy + 6Hy

During the trajectory, H is conserved. H=H;=H,

AH = Hy — Hy = (Hy — H) — (Hy — H) = 6H, — 6H;

What matters is the fluctuation of /H.

Q)

2
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From Clark, Joo, Kennedy, Silva, 1108.1828
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Multiple time scales

In the HMC, different forces have vastly different size.
F g > F ferm, UV > F, ferm IR

This is the oppostite ordering of the cost of their
computation.,

Multiple fime scale integrators have been proposed.

3
Force2 =

1
Field —— ——=——» -

%H

The idea is to integrate “large forces” on a finer time scale
— exacter.
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Multiple time scales

Tx(€/2)Tu(€)Tr(e/2)
— T 1(e/2) [Tr2(e/2m) Ty (e/m) T 2(e/2m))™ Tr 1(€/2)

Experimental finding: it never works as well as expected.

Can be understood by Shadow Hamiltonian

H =H+ [c1(F1,F1) +Cg7‘ra7rbs(1ab) +co(F1,F9)

1
+ @(Cz(szFz) + Czﬁaﬂbs(gab))]

Interference term between “large” and “small” force not
suppressed by relative times scale m.
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Summary: Integrators

Integrators have contributed to improvement in
algorithms.

Typical gains are factor two.
No miracles to be expected.

Difficulty separating IR from UV.

Optimization by measurement is possible.
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Fermions
Formulation of the theory
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Fermions
Textbook verions contains Grassmann fields ¢ and v

Z = / Hdwidqﬁ HdUi#e_Sg_Zf“’sz(mf)‘”f
2 1,0

We integrate out the fermions and get the quark
determinant

Z= /Hd Hdewmf) 8

Determinant not usable in large volume situation
— too complicated/expensive to compute
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Fermions in simulations

|deally, we would want to use
Ny Ny
Sform = Z tr logD(m;) = Z log det D(m;)

Unfortunately, the determinant of a N x N matrix is
virtually impossible to compute for large N.

Need O(N?) operations.

Large memory requirement.

Is numerically extremely unstable.
=

Need algorithm with is based on solutions of linear

equations.
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Pseudofermions

Pseudofermions PETCHER, WEINGARTEN'81

det @ / dg][dgl]e"# Q%) Q=D

Pseudofermion field ¢ can be easily generated:

m Generate Gaussian complex-valued quark field n
P[] oc e~ (1)

m Multiply with @
¢ =@Qn
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Even—-odd preconditioning

The Wilson Dirac operator connects only neighboring sites.

Label them “even” and “odd”.

D.,. D
D= ee eo
<D ve  Doo >

D,, and D,, are site-diagonal matrices.



Even-odd preconditioning

Matrix identity
Dee Deo o
Doe Doo N

1 DeoD;t\ ((Dee — DeoDilDye) O 1 0
0o 1 0 D.,) \D-1D,, 1

00

For the determinant this means
det D = detD,, det(De — DooD,;;' Do) = detD,, det D

with D the Schur complement.

In the following., | will mostly write D or @ = ~sD.
In practice, this frequently means D or Q.
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Include pseudofermions in path integral.

Z = / [dU][dr][d¢][do'] o~ 2 (M) —Se[U]= (¢, gz ¢)+21og detQuo

S, gauge action

effective fermion action for Ny = 2.

1
Sf,eff = (d)’ @d)) - 210gdetho
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HMC

Momentum and pseudofermion Heatbath

Refresh momenta =
Refresh pseudofermions ¢ — kept fixed during trajectory

Molecular Dynamics

Solve numerically MD equations for some MC time 7
(frajectory) deriving from Hamiltonion H = 4 (r, ) + S[U].

(U’

(T V\/

Acceptance Step

Correcting for inaccuracies in infegration.
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Problems

Pseudofermions PETCHER, WEINGARTEN'81

det @2 x / dpe(#Q779)

m Works only for pairs of degenerate flavors
Solution: take square root — PHMC, RHMC

m Force evaluation expensive: 2 solutions of Dirac eq.

Fpr=—(6, @726QQ * ¢) + h.c.

B Seems somewhat unnatural
Start with manifestly local action
— quite non-local expression
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Berlin Wall
Status 2000 Quarks 16x heavier than in nature.
No perspective even with 2010 computers.

Coarse lattices a ~ 0.1fm
(the typical length scale is 1fm)

Cost of a simulation (Ukawa Lattice 2001)

_ #conf my -3 L1° a 17
COSt_C[ 1000] [16mphyJ 3fm '[o.lfm]

C ~ 2.8 Tflops year
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Fermions

Pseudofermions PETCHER, WEINGARTEN'81

det @2 o / dpe(»@7%)

m HMC + single pseudofermion action not successful
m Compare

Fye=06(0,Q@2%p) and  Fex = —itr log @

m Fis “stochastic estimate” of Fey
At beginning of the trajectory (Fye) g = Fex

m Very large fluctuations in Fi¢

\Fof| > [Fex|
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Fermions
Modifications
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Determinant Splitting

Insight

m Need better estimate of determinant.
m Frequency splitting.

Mass preconditioning Hasenbusch’01, Hasenbusch,Jansen’03

2
det @ = det @ 2 det(Q? + p?)

Q> +

m Each determinant represented by pseudo-fermion

m "Pauli-Villars” for fermion force

m more intermediate y — Noise reduction in force.

B success depends on choice of p. Urbach et al'04
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Numerical examples

m Ny =2+ 1 NP improved Wilson fermions

m lwasaki gauge action

m 64 x 323 lattice with @ = 0.09fm

m studied extensively by PACS-CS AOKI ET AL'09, 10
B m,; = 200MeV

mm,L=3

Algorithm M. LUSCHER, S.5.12

m Reweighting o avoid stability problem:s.

m Generated with public openQCDh code.
http://cern.ch/luscher/openQCD
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http://cern.ch/luscher/openQCD

Effect of determinant factorization

Forces for light quark, 20 configurations. u; = 0.05, ue = 0.5

rF q | ‘ ‘ "3PF

4 5 6 7 8 42 425 43 435 44
[F|2flink [F|2flink

m Fluctuations of force not much reduced.

m Fluctuations in norm squared of force:
Spread reduced by more than factor 100.
(Different scalel)
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Understanding the improvement

Framework CLARK, JOO, KENNEDY, SILVA' 11
m Shadow Hamiltonian of symplectic integrators
H = H + (¢1 0,88, — cg mqmp8,0p8)67% + ...

m Large cancellation between the two terms
— potential for optimization.

m 2nd order minimum norm integrators:
minimum of c% + c% Omelyan, Mrygold, Folk’03

m Symplectic integrators profit from reduced
fluctuations in norm of force.
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Numerical examples

1PF Fo ' 3PF

-100000 0 100000 -1000 0 1000
(AH-<AH>)/(3T)? (BH-<AH>)/(5T)2

m AH = H — H, fermions only.

m Second order min. norm Omelyan integrator.

m Much larger step-size possible.
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