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HMC

Momentum Heatbath

Refresh momenta π (Gaussian random numbers)

Molecular Dynamics

Solve numerically MD equations for some MC time τ
(trajectory) deriving from Hamiltonian H = 1

2(π, π) + S[U].

π,(   U)
π,(  ’ U’)

Acceptance Step

Correcting for inaccuracies in integration.
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Numerical integration

U̇x,µ = πx,µUx,µ π̇x,µ = −Fx,µ

Splitting methods

H =
1
2

(π, π) + S[U] = T + S

Eom for each part T, S can be solved exactly
→ symplectic
T defines TU

Ux,µ(τ) = eπτUx,µ(0), π(τ) = π(0)

S defines Tp

Ux,µ(τ) = Ux,µ(0), π(τ) = π(0)− τF
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Splitting methods

TU = eεT̂ : Ux,µ(ε) = eπεUx,µ(0), π(ε) = π(0)

Tp = eεŜ : Ux,µ(ε) = Ux,µ(0), π(ε) = π(0)− εF

Can be put together in any order.

Legal integrator:
Time steps of TU and Tp sum up to 1.

Symmetric integrator
→Integration error automatically O(ε2)

Example: leapfrog (ε = τ/N)

T = (TU(ε/2)Tp(ε)TU(ε/2))N

(  ’ U’)
(   U)

π,
π,
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Omelyan & Co

Leapfrog has been long-time workhorse
Robust, but in general not optimal.

Easy improvement without detailed knowledge of physics
system.

Seminal paper Omelyan, Mrygold, Folk, 2003

Introduce reduandant parameters and optimize

T = [Tp(ελ)TU(ε/2)Tp(ε(1− 2λ)TU(ε/2)Tp(ελ)]N/2

λ = 0.19 performs roughly 2× better than leapfrog.

The paper contains O(100) integrators.
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Optimizing integrators

Exact time evolution operator

eτ
d
dt = eτĤ with Ĥ = − δS

δU
∂

∂U
− δT
δπ

∂

∂π
= Ŝ + T̂

with T(π) = (π, π) and S[U] the action.
Ĥ is the Hamiltonian vector field.

Leap-frog integrator

[eε/2 Ŝeε T̂eε/2 Ŝ]τ/ε

= exp{(Ŝ + T̂)ε− ε3

24
([Ŝ, [Ŝ, T̂]] + 2[T̂, [Ŝ, T̂]])}τ/ε

= exp{(Ŝ + T̂)τ − τε2

24
([Ŝ, [Ŝ, T̂]] + 2[T̂, [Ŝ, T̂]])}

Baker-Campbell-Hausdorff formula has been used.
see series of paper by Clark and Kennedy
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Shadow Hamiltonian

For each symplectic integrator, there is the
conserved shadow Hamiltonian

Can be constructed by a power series
Commutators→ Poisson brackets

H̃ = H + ε2(c1 {S, {S,T}}+ c2{T, {S,T}})
= H + ε2(c1 ∂aS∂aS− c2 πaπb∂a∂bS) . . .

Convergence of the series?

c1 and c2 depend only on the integrator

For a long time, it has been believed that what matters is
the size of

δH = H̃ −H
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Optimizing integrators

At the beginning of the trajectory

H1 =
1
2

(π1, π1) + S[U1] H̃1 = H1 + δH1 (1)

At the end of the trajectory

H2 =
1
2

(π2, π2) + S[U2] H̃2 = H2 + δH2 (2)

During the trajectory, H̃ is conserved. H̃=H̃1=H̃2

∆H = H2 −H1 = (H2 − H̃)− (H2 − H̃) = δH2 − δH1

What matters is the fluctuation of δH.
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Example

From Clark, Joo, Kennedy, Silva, 1108.1828
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Multiple time scales

In the HMC, different forces have vastly different size.

Fg � Fferm,UV � Fferm,IR

This is the oppostite ordering of the cost of their
computation.

Multiple time scale integrators have been proposed.

Field
1
2
3

Force

The idea is to integrate “large forces” on a finer time scale
— exacter.
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Multiple time scales

Tπ(ε/2)TU(ε)Tπ(ε/2)
→ Tπ,1(ε/2) [Tπ,2(ε/2m) TU(ε/m) Tπ,2(ε/2m)]m Tπ,1(ε/2)

Experimental finding: it never works as well as expected.

Can be understood by Shadow Hamiltonian

H̃ = H + [c1(F1,F1) + c2π
aπbS(ab)

1 + c2(F1,F2)

+
1

m2 (c2(F2,F2) + c2π
aπbS(ab)

2 )]

Interference term between “large” and “small” force not
suppressed by relative times scale m.
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Summary: Integrators

Integrators have contributed to improvement in
algorithms.

Typical gains are factor two.
No miracles to be expected.

Difficulty separating IR from UV.

Optimization by measurement is possible.
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Fermions
Formulation of the theory
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Fermions

Textbook verions contains Grassmann fields ψ and ψ̄

Z =
∫ ∏

i

dψidψ̄
∏
i,µ

dUi,µe−Sg−
P

f ψ̄f D(mf )ψf

We integrate out the fermions and get the quark
determinant

Z =
∫ ∏

i,µ

dUi,µ
∏

f

det D(mf ) e−Sg

Determinant not usable in large volume situation
→ too complicated/expensive to compute
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Fermions in simulations

Ideally, we would want to use

Sferm = −
Nf∑
i=1

tr log D(mi) = −
Nf∑
i=1

log det D(mi)

Unfortunately, the determinant of a N ×N matrix is
virtually impossible to compute for large N.

Need O(N2) operations.

Large memory requirement.

Is numerically extremely unstable.

⇒
Need algorithm with is based on solutions of linear
equations.
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Pseudofermions

Pseudofermions PETCHER, WEINGARTEN’81

det Q2 ∝
∫

[dφ][dφ†] e−(φ,Q−2φ) , Q = γ5D

Pseudofermion field φ can be easily generated:

Generate Gaussian complex-valued quark field η

P[η] ∝ e−(η,η)

Multiply with Q
φ = Qη
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Even–odd preconditioning

The Wilson Dirac operator connects only neighboring sites.

Label them “even” and “odd”.

D =
(

Dee Deo
Doe Doo

)
Doo and Dee are site-diagonal matrices.
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Even–odd preconditioning

Matrix identity(
Dee Deo
Doe Doo

)
=(

1 DeoD−1
oo

0 1

)(
(Dee −DeoD−1

oo Doe) 0
0 Doo

)(
1 0

D−1
oo Doe 1

)
For the determinant this means

det D = det Doo det(Dee −DeoD−1
oo Doe) ≡ det Doo det D̂

with D̂ the Schur complement.

In the following, I will mostly write D or Q = γ5D.
In practice, this frequently means D̂ or Q̂.
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Partition function

Include pseudofermions in path integral.

Z =
∫

[dU][dπ][dφ][dφ†] e−
1
2 (π,π)−Sg[U]−(φ, 1

Q2 φ)+2 log detQoo

Sg: gauge action

effective fermion action for Nf = 2.

Sf ,eff = (φ,
1

Q̂2
φ)− 2 log detQoo

19 / 29



HMC

Momentum and pseudofermion Heatbath

Refresh momenta π
Refresh pseudofermions φ→ kept fixed during trajectory

Molecular Dynamics

Solve numerically MD equations for some MC time τ
(trajectory) deriving from Hamiltonian H = 1

2(π, π) + S[U].

π,(   U)
π,(  ’ U’)

Acceptance Step

Correcting for inaccuracies in integration.
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Problems

Pseudofermions PETCHER, WEINGARTEN’81

det Q2 ∝
∫

dφ e−(φ,Q−2φ)

Works only for pairs of degenerate flavors
Solution: take square root→ PHMC, RHMC
Force evaluation expensive: 2 solutions of Dirac eq.

Fpf = −(φ, Q−2 δQ Q−1 φ) + h.c.

Seems somewhat unnatural
Start with manifestly local action
→ quite non-local expression
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Berlin Wall

Status 2000 Quarks 16× heavier than in nature.
No perspective even with 2010 computers.

Coarse lattices a ≈ 0.1fm
(the typical length scale is 1fm)

Cost of a simulation (Ukawa Lattice 2001)

Cost = C
[

#conf
1000

]
·
[

mq

16mphys

]−3
·
[

L
3fm

]5
·
[ a

0.1fm

]−7

C ≈ 2.8 Tflops year
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Fermions

Pseudofermions PETCHER, WEINGARTEN’81

det Q2 ∝
∫

dφ e−(φ,Q−2φ)

HMC + single pseudofermion action not successful
Compare

Fpf = δ(φ, Q−2φ) and Fex = −δtr log Q2

Fpf is “stochastic estimate” of Fex
At beginning of the trajectory 〈Fpf〉φ = Fex

Very large fluctuations in Fpf

|Fpf| � |Fex|
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Fermions
Modifications
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Determinant Splitting

Insight

Need better estimate of determinant.
Frequency splitting.

Mass preconditioning Hasenbusch’01, Hasenbusch,Jansen’03

det Q2 = det
Q2

Q2 + µ2 det(Q2 + µ2)

Each determinant represented by pseudo-fermion
“Pauli-Villars” for fermion force
more intermediate µ→ Noise reduction in force.
success depends on choice of µ. Urbach et al’04
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Numerical examples

Action

Nf = 2 + 1 NP improved Wilson fermions
Iwasaki gauge action
64× 323 lattice with a = 0.09fm
studied extensively by PACS-CS AOKI ET AL’09,’10

mπ = 200MeV
mπL = 3

Algorithm M. LÜSCHER, S.S.’12

Reweighting to avoid stability problems.
Generated with public openQCD code.
http://cern.ch/luscher/openQCD
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Effect of determinant factorization

Forces for light quark, 20 configurations. µ1 = 0.05, µ2 = 0.5

 4  5  6  7  8

|F|2/link

1PF

 4.2  4.25  4.3  4.35  4.4

|F|2/link

3PF

Fluctuations of force not much reduced.
Fluctuations in norm squared of force:
Spread reduced by more than factor 100.
(Different scale!)
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Understanding the improvement

Framework CLARK, JOO, KENNEDY, SILVA’11

Shadow Hamiltonian of symplectic integrators

H̃ = H + (c1 ∂aS∂aS− c2 πaπb∂a∂bS)δτ2 + . . .

Large cancellation between the two terms
→ potential for optimization.

2nd order minimum norm integrators:
minimum of c2

1 + c2
2 Omelyan, Mrygold, Folk’03

Symplectic integrators profit from reduced
fluctuations in norm of force.
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Numerical examples

-100000  0  100000

(∆H-<∆H>)/(δτ)2

1PF

-1000  0  1000

(∆H-<∆H>)/(δτ)2

3PF

∆H = H̃ −H, fermions only.
Second order min. norm Omelyan integrator.
Much larger step-size possible.
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