Algorithms for lattice QCD I

Stefan Schaefer

NIC, DESY

Kolkata Lattice Gauge Theory School

Algorithms in Lattice QCD

Definition

Using a discrete space-time QCD can be defined.

Computational method

Path integral \rightarrow high dimensional integral
Computation of integrals by Monte Carlo.
E.g. hadron masses, decay constants, ...

Algorithms

Many calculations computationally very expensive.
Massively parallel computers employed.
Need to work on simulation setup, algorithms,...
Many choices.
Physics understanding \leftrightarrow Numerical setup.

Algorithms in Lattice QCD

Field update

Integral over field variables \rightarrow sum over field
configurations
How to efficiently generate these fields.
Transformation of action into form amenable to numerical treatment.
Numerical solution of diff. eq.

Solution of Dirac equation

Needed in field update and fermionic observables.
Out-of-the-box algorithms, e.g., the conjugate gradient, perform badly
\rightarrow Need to take physics into account

Outline

Monday

Introduction
Markov Chain Monte Carlo
The HMC algorithm
Tuesday
MD integrators
Fermions in QCD simulations
Mass preconditioning

Outline

Wednesday

Other fermion methods (RHMC, DD-HMC)
Solution of the Dirac equation

Thursday
Solution of the Dirac equation II
Local deflation
Methods to compute hadron observables

Friday

Autcorrelations

General reading:
M. Lüscher

Computational strategies in lattice QCD
Les Houches 2009

Goal

Computation of path integral

$$
\langle A\rangle=\frac{1}{Z} \int \prod_{x, \mu} d U_{x, \mu} e^{-S[U]} A[U]
$$

with

$$
Z=\prod_{x, \mu} d U_{x, \mu} e^{-S[U]}
$$

One $\operatorname{SU}(3)$ integration variable for each link.

Goal

$$
\langle A\rangle=\frac{1}{Z} \int \prod_{x, \mu} d U_{x, \mu} e^{-S[U]} A[U]
$$

One $\operatorname{SU}(3)$ integration variable for each link.
128×64^{3} lattice $\rightarrow 1.3 \cdot 10^{8}$ links
Classical numerical quadrature would need
$N^{\# v a r i a b l e s}$ function evaluations

Monte Carlo

General idea of Monte-Carlo integration

$$
\frac{1}{b-a} \int_{a}^{b} \mathrm{~d} x f(x) \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

with randomly chosen points x_{i} in the integration region

- good idea, if $f(x)$ approximately constant \Rightarrow small fluctuations in $f\left(x_{i}\right)$.
- For a given realization of the N points x_{i}, this is an unbiased estimator of the integral

Error of a MC simulation

$$
\tilde{F}_{j}=\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}^{j}\right)
$$

Index j labels the repetition of the "experiment".
Unbiased = gives correct result on average

$$
F=\langle\langle\tilde{F}\rangle\rangle
$$

$\langle\langle\cdot\rangle\rangle$ average over realizations of the x_{i}
Typical deviation \rightarrow variance of this estimator.

$$
\begin{aligned}
\left\langle\left\langle(\tilde{F}-F)^{2}\right\rangle\right\rangle & =\frac{1}{N^{2}} \sum_{i k}\left\langle\left\langle F_{i} F_{k}\right\rangle\right\rangle-F^{2} \\
& \left.=\frac{1}{N}\left(\sum_{i}\left\langle\left(\tilde{(} F_{i}\right)^{2}\right\rangle\right\rangle-F^{2}\right)=\operatorname{var}(F) / N
\end{aligned}
$$

Error decreases as $1 / \sqrt{N}$

Note of caution

This theoretical analysis assumes knowlege of two quanitites

$$
\bar{F}=\int d x f(x) \quad \text { and } \quad \operatorname{var}(\mathbf{f})=\int d x(f(x)-\bar{f})^{2}
$$

What you get from the Monte Carlo are estimators of these quantities.

The analysis is correct for $N \rightarrow \infty$; ∞ is a large number.
These estimators might have significant errors, which are hard to get from the MC. You might also just have been unlucky.

To a certain extend, practical Monte Carlo is an art and requires careful inspection of the results.

Importance sampling

Estimator correct up to $\sqrt{\operatorname{var}(f) / N} \rightarrow$ reduce variance.

$$
\int \mathrm{d} x f(x)=\int \rho(x) \mathrm{d} x \frac{f(x)}{\rho(x)}=\left[\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{\rho\left(x_{i}\right)}\right]\left(1+\mathcal{O}\left(N^{-1 / 2}\right)\right)
$$

with points x_{i} chosen according to ρ.

- Choose points accoring to probablity distribution similar to function to be integrated
- optimal, if distribution $\propto|f(x)| \ldots$ need $\int d x|f(x)|$

Markov Chain Monte Carlo

Problem of "straight" Monte Carlo is to find a normalized probability density $P(x)$

Solution
Use a method which only needs relative probabilites
Construct a sequence of points

$$
x_{1} \rightarrow x_{2} \rightarrow x_{3} \rightarrow \cdots \rightarrow x_{N}
$$

using a transition probability $T\left(x_{i+1} \leftarrow x_{i}\right)$
Analysis using arguments of a N sets of such chains.

Properties of T

For any given pair of points x_{1} and x_{2}

$$
T\left(x_{2} \leftarrow x_{1}\right)
$$

with the following properties
(A) Stability

$$
P\left(x^{\prime}\right)=\int d x P(x) T\left(x^{\prime} \leftarrow x\right)
$$

(B) Normalization

$$
\int d x^{\prime} T\left(x^{\prime} \leftarrow x\right)=1
$$

(C) Ergodicity

$$
T\left(x^{\prime} \leftarrow x\right)>0 \text { for each pair } x, x^{\prime}
$$

No reference to absolute normalization of P

Analysis of MCMC

For the sake of simplicity, consider discrete state space. Integrals \rightarrow sums.

Example for a single variable with three possible values:

$T\left(x^{\prime} \leftarrow x\right)$ is a matrix acting in the space of states.
For the example a 3×3 matrix, because x can take 3 values.
A probability distribution is a normalized vector in this space.

Analysis of MCMC

Imagine having an ensemble of points x_{i} distributed according to $P(x)$.

Condition (A) reads

$$
P=T P
$$

$\rightarrow P$ is eigenvector of T with eigenvalue 1.

Theorem of Frobenius-Perron

For a matrix with the properties $\mathrm{A}-\mathrm{C}$ the following holds

- There is exactly one eigenvalue $\lambda=1$.
- All eigenvalues λ have $|\lambda| \leq 1$.

Convergence of Markov Process

Given any starting distribution P_{0} repeated application of T leads to exponential convergence to desired distribution

$$
\begin{aligned}
T^{n} P_{0} & =\sum_{i=0}^{N} \lambda_{i}^{n}\left(\Psi_{i}, P_{0}\right) \Psi_{i} \\
& =\sum_{i=0}^{N} e^{\log \left|\lambda_{i}\right| n}\left(\Psi_{i}, P_{0}\right) \frac{\lambda_{i}}{\left|\lambda_{i}\right|} \Psi_{i} \\
& \propto P+\mathbf{O}\left(e^{-n / \tau_{1}}\right)
\end{aligned}
$$

$\tau_{i}=1 / \log \left|\lambda_{i}\right|$ are the exponential autocorrelation times A nicer interpretation in terms of single exponentials can be given with detailed balance, see later.

Practical MCMC

Start with one (or a few) points Averages of Monte Carlo time

$$
\langle f\rangle=\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

Cut away first thermalization phase.

Time evolution

$$
\langle f\rangle=\frac{1}{N} \sum_{t=1}^{N} f\left(x_{i}\right)(1+\mathcal{O}(1 / \sqrt{N}))
$$

At the beginning large contributions from $\Psi_{i>0}$.
Formally, they are supressed by $1 / N$, but they are best not considered.
A valid simulation must have $n \gg 1 / \tau_{1}$

Autocorrelations

There is a price to pay:
Subsequent points x_{i} /configurations are in general not independent.

$$
\left\langle\left\langle f\left(x_{i}\right) f\left(x_{i+1}\right)\right\rangle\right\rangle \neq 0
$$

This needs to be taken into account in the analysis of the data.

It also can make simulations exceedingly expensive.

Construction of T

Constructing a valid T seems a daunting task. Metropolis-Hastings method

- Symmetric proposal (trans. prob. w/ $P_{0}(x)=$ const)

$$
W\left(x^{\prime} \leftarrow x\right)=W\left(x \leftarrow x^{\prime}\right)
$$

- Acceptance step

$$
P_{a c c}\left(x^{\prime}, x\right)=\min \left[1, \frac{P\left(x^{\prime}\right)}{P(x)}\right]
$$

Next point is x^{\prime} with propability $P_{\text {acc }}$, else x
Total transition propability
$T\left(x^{\prime} \leftarrow x\right)=W\left(x^{\prime} \leftarrow x\right) P_{a c c}\left(x^{\prime}, x\right)+\delta_{x x^{\prime}} \sum_{\tilde{x}}\left(1-P_{a c c}(\tilde{x}, x)\right) W(\tilde{x} \leftarrow x)$

Proof

$$
T\left(x^{\prime} \leftarrow x\right)=W\left(x^{\prime} \leftarrow x\right) P_{\text {acc }}\left(x^{\prime}, x\right)+\delta_{x x^{\prime}}\left[\sum_{\tilde{x}}\left(1-P_{a c c}(\tilde{x}, x)\right) W(\tilde{x} \leftarrow x)\right]
$$

(A) Stability

$$
\begin{aligned}
& \sum_{x} P(x) T\left(x^{\prime} \leftarrow x\right) \\
& \left.=\sum_{x} W\left(x^{\prime} \leftarrow x\right) P(x) P_{\text {acc }}\left(x^{\prime}, x\right)+P\left(x^{\prime}\right) \sum_{\tilde{x}}\left(1-P_{\text {acc }}(\tilde{x}, x)\right) W(\tilde{x} \leftarrow x)\right] \\
& =\sum_{x} W\left(x \leftarrow x^{\prime}\right) P\left(x^{\prime}\right) P_{\text {acc }}\left(x, x^{\prime}\right)+P\left(x^{\prime}\right)\left(1-\sum_{\tilde{x}} P_{\text {acc }}(\tilde{x}, x) W(\tilde{x} \leftarrow x)\right]=P\left(x^{\prime}\right)
\end{aligned}
$$

(B) Normalization

$$
\sum_{x^{\prime}} T\left(x^{\prime} \leftarrow x\right)=1
$$

Practical implementation

We want to generate the sequence

$$
x_{1} \rightarrow x_{2} \rightarrow x_{3} \rightarrow \cdots
$$

and arrived at x_{j}

- Make a proposal y according to probability $W\left(y \leftarrow x_{j}\right)$
- Compute $P_{\text {acc }}$ and draw random number $0 \leq r<1$

$$
x_{j+1}= \begin{cases}y & \text { if } r<P_{\mathrm{acc}} \\ x_{j} & \text { else }\end{cases}
$$

Good proposal

- Easy to generate
- High acceptance propability

Generic issues of the method

The step size can be rather limited

Small steps

$P\left(x^{\prime}\right) \approx P(x) \rightarrow P_{\text {acc }}$ high
But it take many steps to sample the whole integration space
Large autocorrelations

Large steps

Small autocorrelations
Feasible only if an update leading to reasonable $P_{\text {acc }}$ can be found
Can be difficult to compute proposal.
In high dimensional spaces, it can be very difficult to argue, what "large step" and "small step" even mean.

Summary of part I

Monte Carlo is a method to numerically compute high-dimensional integrals.

Integral \rightarrow average over sample points.
Sample points need to be chosen in region of high probability.

Problem of constructing a normalized distribution
\rightarrow Markov Chain Monte Carlo
No normalized distribution needed.
Deal with autocorrelations.

Back to QCD

One point $x \rightarrow$ one value for each link variable \rightarrow one field configuration

Instead of x we will therefore now use U which are in $\mathrm{SU}(3)$.

$$
\langle A\rangle=\frac{1}{Z} \int \prod_{x, \mu} d U_{x, \mu} e^{-S[U]} A[U]
$$

with

$$
Z=\prod_{x, \mu} d U_{x, \mu} e^{-S[U]}
$$

Normalized probability density

$$
P[U]=\frac{1}{Z} e^{-S[U]}
$$

Ratios in probabilities
\rightarrow
Need to evaluate differences in the action $S[U]$ While this choice of $P[U]$ seems natural, it is not unique

QCD

Basically two types of algorithms

Single link updates

Of the $4 V$ links, only one is changed at a time.
In each step $S[U]-S\left[U^{\prime}\right]$
Possible if this is an $\mathrm{O}(1)$ operation.
With dynamical fermions, estimating change in action is a global $\mathrm{O}(V)$ operation

Method of choice in pure gauge theory.
No systematic study.

QCD

Basically two types of algorithms
Updates based on Molecular Dynamics
Based on ideas from classical mechanics.

Field configuration position Introduce momenta \rightarrow equations of motion.
Updates keep propbability constant (micro-canonical)
Solves problem of finding a good proposal in
Metropolis-Hastings procedure

Hybrid Monte Carlo

Extended field space

$$
Z=\int[d U][d \pi] e^{-\frac{1}{2}(\pi, \pi)-S[U]}
$$

Expectation values of observables $A[U]$ remain the same.

Momenta $\pi=\pi^{a} T^{a} \in \operatorname{su}(N), \pi^{a} \in \mathbb{R}$

$$
(\pi, \pi)=\sum_{x, \mu} \pi_{x, \mu}^{a} \pi_{x, \mu}^{a}
$$

Updates

Make updates in this extended phase space.
\Rightarrow updates for U fields.

Molecular dynamics

Essential update step for the gauge fields: $(\pi, U) \rightarrow\left(\pi^{\prime}, U^{\prime}\right)$

Hamilton's equations of motion

Hamiltonian

$$
H[\pi, U]=\frac{1}{2}(\pi, \pi)+S[U]
$$

E.o.m.

$$
\begin{aligned}
\dot{U}_{x, \mu} & =\pi_{x, \mu} U_{x, \mu} \\
\dot{\pi}_{x, \mu} & =-F_{x, \mu}
\end{aligned}
$$

$$
F_{x, \mu}^{a}=\frac{\partial \boldsymbol{S}\left(e^{\omega} U\right)}{\partial \omega^{a}(x, \mu)}
$$

Molecular dynamics

By Liouville's theorem, the classical dynamics

$$
(\pi, U) \rightarrow\left(\pi^{\prime}, U^{\prime}\right)
$$

maps areas of equal likelihood into eachother.
Energy conservation

$$
\frac{d}{d \tau} H=0
$$

Boltzmann factor e^{-H} is constant.

Conservation of phase space

An exact solution of the E.o.m is a valid update.
Fundamentally different from Metropolis-Hastings
In practice: integration errors

HMC

Momentum Heatbath

Refresh momenta π (Gaussian random numbers)

Molecular Dynamics

Solve numerically MD equations for some MC time τ (trajectory) deriving from Hamiltonian $H=\frac{1}{2}(\pi, \pi)+S[U]$.

Acceptance Step

Correcting for inaccuracies in integration.

Metropolis

Different viewpoint:
The molecular dynamics as the symmetric proposal in Metropolis.

This solves the problem of the inexact integration.
Need a symplectic integrator, i.e. area conserving and reversible.

Reversibility haunts computer implementations. No good theory for this.

Metropolis

Acceptance step

Molecular dynamics $(\pi, U) \rightarrow(\bar{\pi}, \bar{U})$

$$
P_{\mathrm{acc}}=\min \left(1, e^{-(H(\bar{\pi}, \bar{U})-H(\pi, U))}\right)
$$

Exact solution of MD equations has $\Delta H=0$
\Rightarrow always accepted
ΔH needs to be $\mathrm{O}(1)$ for good acceptance. Difficult to achieve on large volume.

Updates

$$
Z=\int[d U][d \pi] e^{-\frac{1}{2}(\pi, \pi)-S[U]}
$$

Momenta: Heatbath

- $(\pi, \pi)=\sum_{x, \mu}\left|\pi_{x, \mu}^{a}\right|^{2}$
π^{a} are Gaussian random numbers.
■ Normalization is known.
Just for π this is the optimal update no correlation to previous config. Also true for combined system? (Kramers' rule,...)

Comments

Momentum heat-bath is the only source of randomness.
Makes algorithm ergodic.
Problems with ergodicity from $S=\infty$ surfaces.

The original hope was that a trajectory consititutes a macroscopic update.

Free field theory

$$
\ddot{U}=\dot{\pi}=\frac{\delta S}{\delta U}
$$

\rightarrow Monte Carlo Time $\tau \propto 1 / a$

In the classic algorithm trajectory length is scaled with $1 / a$.
In number of updates, autocorrelations should stay the same.
M.Lüscher, S.S.'11

This does not apply in interacting theory
\rightarrow Wednesday
Virotta,Sommer, S.S.' 10
Still, rather long trajectories are a good idea, $\tau \sim 2$.

For exercises in ϕ^{4} theory: S.S., Les Houches 2009, available at NIC@DESY website.

