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Algorithms in Lattice QCD

Definition Wilson’74

Using a discrete space-time QCD can be defined.

Computational method
Path integral→ high dimensional integral
Computation of integrals by Monte Carlo.

E.g. hadron masses, decay constants, . . .

Algorithms
Many calculations computationally very expensive.

Massively parallel computers employed.

Need to work on simulation setup, algorithms,. . .
Many choices.
Physics understanding↔ Numerical setup.
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Algorithms in Lattice QCD

Field update
Integral over field variables→ sum over field
configurations

How to efficiently generate these fields.
Transformation of action into form amenable
to numerical treatment.
Numerical solution of diff. eq.

Solution of Dirac equation

Needed in field update and fermionic observables.
Out-of-the-box algorithms, e.g., the conjugate gradient,
perform badly
→ Need to take physics into account
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Outline

Monday

Introduction

Markov Chain Monte Carlo

The HMC algorithm

Tuesday

MD integrators

Fermions in QCD simulations

Mass preconditioning
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Outline

Wednesday

Other fermion methods (RHMC, DD-HMC)

Solution of the Dirac equation

Thursday

Solution of the Dirac equation II
Local deflation

Methods to compute hadron observables

Friday

Autcorrelations

General reading:
M. Lüscher
Computational strategies in lattice QCD
Les Houches 2009
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Goal

µU  (x)x

a

q(  )

Computation of path integral

〈A〉 =
1
Z

∫ ∏
x,µ

dUx,µe−S[U] A[U]

with
Z =

∏
x,µ

dUx,µe−S[U]

One SU(3) integration variable for each link.
6 / 37



Goal

µU  (x)x

a

q(  )

〈A〉 =
1
Z

∫ ∏
x,µ

dUx,µe−S[U] A[U]

One SU(3) integration variable for each link.

128× 643 lattice→ 1.3 · 108 links

Classical numerical quadrature would need
N#variables function evaluations
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Monte Carlo

General idea of Monte-Carlo integration

1
b− a

∫ b

a
dx f (x) ≈ 1

N

N∑
i=1

f (xi)

with randomly chosen points xi in the integration region
good idea, if f (x) approximately constant
⇒ small fluctuations in f (xi).
For a given realization of the N points xi, this is an
unbiased estimator of the integral

a bx x x x x x
31 2 5 64

a bx x x x x x
31 2 5 64

8 / 37



Error of a MC simulation

F̃j =
1
N

N∑
i=1

f (xj
i)

Index j labels the repetition of the “experiment”.

Unbiased = gives correct result on average

F = 〈〈F̃〉〉
〈〈 · 〉〉 average over realizations of the xi

Typical deviation→variance of this estimator.

〈〈(F̃ − F)2〉〉 =
1

N2

∑
ik

〈〈FiFk〉〉 − F2

=
1
N

(
∑

i

〈〈(̃Fi)2〉〉 − F2) = var(F)/N

Error decreases as 1/
√

N
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Note of caution

This theoretical analysis assumes knowlege of two
quanitites

F̄ =
∫

dx f (x) and var(f) =
∫

dx (f (x)− f̄ )2

What you get from the Monte Carlo are estimators of
these quantities.

The analysis is correct for N →∞;∞ is a large number.

These estimators might have significant errors, which are
hard to get from the MC. You might also just have been
unlucky.

To a certain extend, practical Monte Carlo is an art and
requires careful inspection of the results.
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Importance sampling

Estimator correct up to
√

var(f )/N → reduce variance.

∫
dx f (x) =

∫
ρ(x)dx

f (x)
ρ(x)

=

[
1
N

N∑
i=1

f (xi)
ρ(xi)

]
(1 +O(N−1/2))

with points xi chosen according to ρ.
Choose points accoring to probablity distribution
similar to function to be integrated
optimal, if distribution ∝ |f (x)| . . . need

∫
dx|f (x)|

a bx
2 5

x xx x x
61 43
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Markov Chain Monte Carlo

Problem of “straight” Monte Carlo is to find a
normalized probability density P(x)

Solution

Use a method which only needs relative probabilites

Construct a sequence of points

x1 → x2 → x3 → · · · → xN

using a transition probability T(xi+1 ← xi)

Analysis using arguments of a N sets of such chains.
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Properties of T

For any given pair of points x1 and x2

T(x2 ← x1)

with the following properties

(A) Stability

P(x′) =
∫

dx P(x) T(x′ ← x)

(B) Normalization∫
dx′ T(x′ ← x) = 1

(C) Ergodicity

T(x′ ← x) > 0 for each pair x, x′

No reference to absolute normalization of P
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Analysis of MCMC

For the sake of simplicity, consider discrete state space.
Integrals→ sums.

Example for a single variable with three possible values:
P(x)

x

T(x′ ← x) is a matrix acting in the space of states.
For the example a 3× 3 matrix, because x can take 3 values.

A probability distribution is a normalized vector in this
space.
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Analysis of MCMC

Imagine having an ensemble of points xi distributed
according to P(x).

Condition (A) reads
P = T P

→ P is eigenvector of T with eigenvalue 1.

Theorem of Frobenius–Perron

For a matrix with the properties A–C the following holds

• There is exactly one eigenvalue λ = 1.

• All eigenvalues λ have |λ| ≤ 1.
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Convergence of Markov Process

Given any starting distribution P0 repeated application of
T leads to exponential convergence to desired
distribution

TnP0 =
N∑

i=0

λn
i (Ψi,P0) Ψi

=
N∑

i=0

elog |λi|n (Ψi,P0)
λi
|λi|

Ψi

∝ P + O(e−n/τ1)

τi = 1/ log |λi| are the exponential autocorrelation times

A nicer interpretation in terms of single exponentials can be
given with detailed balance, see later.
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Practical MCMC

Start with one (or a few) points
Averages of Monte Carlo time

〈f 〉 =
1
N

N∑
i=1

f (xi)
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τ

Cut away first thermalization phase.
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Time evolution

 0
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A

τ

〈f 〉 =
1
N

N∑
t=1

f (xi)(1 +O(1/
√

N))

At the beginning large contributions from Ψi>0.
Formally, they are supressed by 1/N, but they are best not
considered.
A valid simulation must have n� 1/τ1
needs to be determined from the simulation
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Autocorrelations

There is a price to pay:
Subsequent points xi/configurations are in general not
independent.

〈〈f (xi)f (xi+1)〉〉 6= 0

This needs to be taken into account in the analysis of the
data.

It also can make simulations exceedingly expensive.

 4.2
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 0  2000  4000  6000

t 0

τ[MD time]
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Construction of T

Constructing a valid T seems a daunting task.
Metropolis–Hastings method Metropolis et al’53

• Symmetric proposal (trans. prob. w/ P0(x) =const)

W(x′ ← x) = W(x← x′)

• Acceptance step

Pacc(x′, x) = min[1,
P(x′)
P(x)

]

Next point is x′ with propability Pacc, else x

Total transition propability

T(x′ ← x) = W(x′ ← x)Pacc(x′, x)+δxx′
∑

x̃

(1−Pacc(x̃, x))W(x̃← x)
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Proof

T(x′ ← x) = W(x′ ← x)Pacc(x′, x)+δxx′ [
∑

x̃

(1−Pacc(x̃, x))W(x̃← x)]

(A) Stability

∑
x

P(x) T(x′ ← x)

=
∑

x

W(x′ ← x)P(x)Pacc(x′, x) + P(x′)
∑

x̃

(1− Pacc(x̃, x))W(x̃← x)]

=
∑

x

W(x← x′)P(x′)Pacc(x, x′) + P(x′)(1−
∑

x̃

Pacc(x̃, x)W(x̃← x)] = P(x′)

(B) Normalization ∑
x′

T(x′ ← x) = 1
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Practical implementation

We want to generate the sequence

x1 → x2 → x3 → · · ·

and arrived at xj

• Make a proposal y according to probability W(y← xj)

• Compute Pacc and draw random number 0 ≤ r < 1

xj+1 =

{
y if r < Pacc

xj else

Good proposal
• Easy to generate
• High acceptance propability
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Generic issues of the method

The step size can be rather limited

Small steps

P(x′) ≈ P(x)→ Pacc high
But it take many steps to sample the whole integration
space
Large autocorrelations

Large steps

Small autocorrelations
Feasible only if an update leading to reasonable Pacc can
be found
Can be difficult to compute proposal.

In high dimensional spaces, it can be very difficult to
argue, what “large step” and “small step” even mean.
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Summary of part I

Monte Carlo is a method to numerically compute
high-dimensional integrals.

Integral→ average over sample points.

Sample points need to be chosen in region of high
probability.

Problem of constructing a normalized distribution
→ Markov Chain Monte Carlo
No normalized distribution needed.
Deal with autocorrelations.
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Back to QCD

µU  (x)x

a

q(  )

One point x→ one value for each link variable
→ one field configuration

Instead of x we will therefore now use U which are in
SU(3).
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QCD

〈A〉 =
1
Z

∫ ∏
x,µ

dUx,µe−S[U] A[U]

with
Z =

∏
x,µ

dUx,µe−S[U]

Normalized probability density

P[U] =
1
Z

e−S[U]

Ratios in probabilities
→
Need to evaluate differences in the action S[U]
While this choice of P[U] seems natural, it is not unique
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QCD

Basically two types of algorithms

Single link updates
Of the 4V links, only one is changed at a time.

In each step S[U]− S[U′]
Possible if this is an O(1) operation.

With dynamical fermions, estimating change in action is
a global O(V) operation

Method of choice in pure gauge theory.
No systematic study.
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QCD

Basically two types of algorithms

Updates based on Molecular Dynamics

Based on ideas from classical mechanics.

π,(   U)
π,(  ’ U’)

Field configuration position
Introduce momenta→ equations of motion.

Updates keep propbability constant (micro-canonical)

Solves problem of finding a good proposal in
Metropolis-Hastings procedure
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Hybrid Monte Carlo

Extended field space

Z =
∫

[dU][dπ] e−
1
2 (π,π)−S[U]

Expectation values of observables A[U]
remain the same.

Momenta π = πaTa ∈ su(N), πa ∈ R

(π, π) =
∑
x,µ

πa
x,µπ

a
x,µ

Updates

Make updates in this extended phase space.
⇒ updates for U fields.
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Molecular dynamics

Essential update step for the gauge fields: (π,U)→ (π′,U′)

Hamilton’s equations of motion

Hamiltonian
H[π,U] =

1
2

(π, π) + S[U]

E.o.m.

U̇x,µ = πx,µUx,µ

π̇x,µ = −Fx,µ , Fa
x,µ =

∂S(eωU)
∂ωa(x, µ)
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Molecular dynamics

By Liouville’s theorem, the classical dynamics

(π,U)→ (π′,U′)

maps areas of equal likelihood into eachother.

Energy conservation

d
dτ

H = 0

Boltzmann factor e−H is constant.

Conservation of phase space

An exact solution of the E.o.m is a valid update.

Fundamentally different from Metropolis–Hastings

In practice: integration errors
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HMC

Momentum Heatbath

Refresh momenta π (Gaussian random numbers)

Molecular Dynamics

Solve numerically MD equations for some MC time τ
(trajectory) deriving from Hamiltonian H = 1

2(π, π) + S[U].

π,(   U)
π,(  ’ U’)

Acceptance Step

Correcting for inaccuracies in integration.
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Metropolis

Different viewpoint:

The molecular dynamics as the symmetric proposal in
Metropolis.

This solves the problem of the inexact integration.

Need a symplectic integrator, i.e. area conserving and
reversible.

Reversibility haunts computer implementations.
No good theory for this.

33 / 37



Metropolis

Acceptance step

Molecular dynamics (π,U)→ (π̄, Ū)

Pacc = min(1, e−(H(π̄,Ū)−H(π,U)))

Exact solution of MD equations has ∆H = 0
⇒ always accepted

∆H needs to be O(1) for good acceptance.
Difficult to achieve on large volume.
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Updates

Z =
∫

[dU][dπ] e−
1
2 (π,π)−S[U]

Momenta: Heatbath

(π, π) =
∑

x,µ |πa
x,µ|2

πa are Gaussian random numbers.
Normalization is known.

Just for π this is the optimal update
no correlation to previous config.
Also true for combined system? (Kramers’ rule,. . . )
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Comments

Momentum heat-bath is the only source of randomness.

Makes algorithm ergodic.

Problems with ergodicity from S =∞ surfaces.

The original hope was that a trajectory consititutes a
macroscopic update.

Free field theory

Ü = π̇ =
δS
δU

→ Monte Carlo Time τ ∝ 1/a
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In the classic algorithm trajectory length is scaled with 1/a.

In number of updates, autocorrelations should stay the
same.

M.Lüscher, S.S.’11
This does not apply in interacting theory
→Wednesday

Virotta,Sommer, S.S.’10
Still, rather long trajectories are a good idea, τ ∼ 2.

For exercises in φ4 theory: S.S., Les Houches 2009,
available at NIC@DESY website.
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