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Continuum chiral WI’s as normalisation conditions

For chiral symmetry there is no conserved current with Wilson
quarks.

However: expect that chiral symmetry can be restored in the
continuum limit!

⇒ [Bochicchio et al ’85 ]: use continuum chiral Ward identities
and impose them as normalisation condition at finite lattice
spacing a!



Continuum chiral WI’s as normalisation conditions

Define chiral variations:

δaA(θ)ψ(x) = iγ5
1
2τ

aθ(x)ψ(x), δaA(θ)ψ(x) = ψ(x)iγ5
1
2τ

aθ(x)

Derive formal continuum Ward identities assuming that the
functional integral can be treated like an ordinary integral:

⇒ 〈δaA(θ)O〉 = 〈OδaA(θ)S〉,

δaA(θ)S = −i
∫

d4xθ(x)
(
∂µA

a
µ(x)− 2mPa(x)

)

Aa
µ(x) = ψ(x)γµγ5

1
2τ

aψ(x), Pa(x) = ψ(x)γ5
1
2τ

aψ(x)



Simplest chiral WI: the PCAC relation

Shrink the region R to a point x :

〈Oextδ
a
A(θ)S〉 = 0

⇒
〈
∂µA

a
µ(x)Oext

〉
= 2m 〈Pa(x)Oext〉

In the continuum the PCAC quark mass

m =

〈
∂µA

a
µ(x)Oext

〉

2 〈Pa(x)Oext〉

must be independent of the choice for Oext, x , background
field,...!



Need for O(a) improvement of Wilson quarks

O(a) artefacts can be quite large with Wilson quarks:

PCAC quark mass from
SF correlation functions:

m =
∂0fA(x0)

2fP(x0)

83 × 16 lattice, quenched
QCD, a = 0.1 fm, 2
different gauge
background fields.



On-shell O(a) improvement
Recall Symanzik’s effective continuum theory from lecture 1

Seff = S0 + aS1 + a2S2 + . . . , S0 = Scont
QCD

Sk =

∫
d4x Lk(x)

where L1 is a linear combination of the fields:

ψσµνFµνψ, ψDµDµψ, mψD/ψ, m2ψψ, m tr {FµνFµν}

The action S1 appears as insertion in correlation functions

Gn(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉con

+ a

∫
d4y 〈φ0(x1) . . . φ0(xn)L1(y)〉con

+ a
n∑

k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉con + O(a2)



On-shell O(a) improvement (1)

Basic idea:

Introduce counterterms to the lattice action and composite
operators such that S1 and φ1 are cancelled in the effective
theory

As all physics can be obtained from on-shell quantitities
(spectral quantitities like particle energies or correlation
function where arguments are kept at non-vanishing distance)
one may use the equations of motion to reduce the number of
counterterms

The contact terms which arise from having y ≈ xi can be
analysed in the OPE and are found to be of the same
structure as the counterterms anyway contained in φ1; this
amounts to a redefinition of the counterterms in φ1.

After using the equations of motion one remains with:

ψσµνFµνψ, m2ψψ, m tr {FµνFµν}



On-shell O(a) improvement (2)

1 On-shell O(a) improved Lattice action
The last two terms are equivalent to a rescaling of the bare
mass and coupling (mq = m0 −mcr):

g̃2
0 = g2

0 (1 + bg (g0)amq), m̃q = mq(1 + bm(g0)amq)

The first term is the Sheikholeslami-Wohlert or clover term

SWilson → SWilson + iacsw(g0)a4
∑

x

ψ(x)σµν F̂µν(x)ψ(x)

2 On-shell O(a) improved axial current and density:

(AR)aµ = ZA(g̃0
2)(1 + bA(g0)amq)

{
Aa
µ + cA(g0)∂̃µP

a
}

(PR)a = ZP(g̃0
2, aµ)(1 + bP(g0)amq)Pa



On-shell O(a) improvement (3)

There are 2 counterterms in the massless theory csw, cA, the
remaining ones (bg , bm, bA, bP) come with amq.

Note: all counterterms are absent in chirally symmetric
regularisations!

⇒ turn this around: impose chiral symmetry to determine csw, cA

non-perturbatively:
define bare PCAC quark masses from SF correlation functions

mR =
ZA(1 + bAamq)

ZP(1 + bPamq)
m, m =

∂̃0fA(x0) + cAa∂
∗
0∂0fP(x0)

fP(x0)

At fixed g0 and amq ≈ 0 define 3 bare PCAC masses m1,2,3

(e.g. by varying the gauge boundary conditions) and impose

m1(csw, cA) = m2(csw, cA), m1(csw, cA) = m3(csw, cA)⇒ csw, cA

SF b.c.’s ⇒ high sensitivity to csw & simulations near chiral
limit



Results for csw, Nf = 4 [ALPHA ’09 ]
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On-shell O(a) improvement (4)

Before and after O(a) improvement (PCAC masses from SF
correlation functions, 83 × 16 lattice)



Quenched result for the charm quark mass [ALPHA ’02 ]

The RGI charm quark mass can be defined in various ways
starting from the subtracted bare quark mass
mq,c = m0,c −mcr

starting from the average strange-charm PCAC mass msc

starting from the PCAC mass mcc for a hypothetical mass
degenerate doublet of quarks.

Tune bare charm quark mass to match the Ds meson mass

Obtain the corresponding O(a) improved RGI masses:

r0Mc |msc = ZM r0
{

2msc

[
1 + (bA − bP)12(amq,c + amq,s)

]

−ms [1 + (bA − bP)amq,s)]
}
,

r0Mc |mc = ZM r0mc [1 + (bA − bP)amq,c] ,

r0Mc |mq,c = ZMZr0mq,c [1 + bmamq,c] .

N.B.: all O(a) counterterms are known non-perturbatively in
the quenched case!



Continuum extrapolation of the quenched RGI charm
quark mass

Continuum extrapolation:

r0Mc = A + B(a2/r20 )

r0 = 0.5 fm

Mc = 1.654(45)GeV

mMS
c (mc) = 1.301(34)GeV



Summary On-shell O(a) improvement

After O(a) improvement:

The ambiguity in mcr is reduced to O(a2)

Axial current normalisation can be defined up to O(a2)

Results exist for csw, cA for quenched and Nf = 2, 3, 4 and
various gauge actions

On-shell O(a) improvement seems to work; rather economical
for spectral quantities (e.g. hadron masses): just need csw!

Improvement of quark bilinear operators feasible, four-quark
operators difficult

Non-degenerate quark masses: rather complicated,
proliferation of b-coefficients [Bhattacharya et al ’99 ff ];

However: for small quark masses and fine lattices amq is small
(a few percent at most) and perturbative estimates of
improvement coefficients may be good enough!



The Schrödinger functional and O(a) improvement

The presence of the boundaries induces additional O(a) effects:

counterterms must be local fields of dimension 4 integrated
over the boundaries x0 = 0,T :

pure gauge theory:

∫
d3x tr {F0k(x)F0k(x)},

∫
d3x tr {Fkl(x)Fkl(x)} = 0 (→ b.c.’s)

with fermions:
∫

d3xψ(x)γ0D0ψ(x),

∫
d3xψ(x)γkDkψ(x),

eliminate 2nd counterterm by equation of motion

⇒ all boundary O(a) effects can be cancelled by 2 counterterms
with coefficients ct, c̃t!

In practice use perturbation theory and vary the coefficients in
simulations to assess their impact on observables.



Automatic O(a) improvement of massless Wilson quarks
[Frezzotti, Rossi ’03 ]

Assume mPCAC = 0, finite volume without boundaries:

⇒ Symanziks effective continuum action (using eqs. of motion):

Seff = S0+aS1+. . . , S0 =

∫
d4x ψD/ψ, S1 = c

∫
d4x ψσµνFµνψ

cutoff dependence of lattice correlation functions:

〈O〉 = 〈O〉cont − a〈S1O〉cont + a〈δO〉cont + O(a2).

δO are O(a) counterterms to the composite fields in O, e.g.

O = V a
µ (x)Ab

ν(y)

δO = cV i∂νT
a
µν(x)Aa

ν(y) + V a
µ (x)cA∂νP

b(y)



Automatic O(a) improvement of massless Wilson quarks

Introduce a γ5-transformation (non-anomalous for even
numbers of quarks):

ψ → γ5ψ, ψ → −ψ γ5

transform Symanzik’s effective action and O(a) counterterms

S0 → S0, S1 → −S1

Composite operators can be decomposed in γ5-even and -odd
parts:

O = O+ + O−

O± → ±O ⇒ δO± → ∓δO±



Hence for γ5-even O+ one finds

〈O+〉cont = 〈O+〉cont

〈O+S1〉cont = −〈O+S1〉cont = 0

〈δO+〉cont = −〈δO+〉cont = 0

⇒ 〈O+〉 = 〈O+〉cont + O(a2)

while for γ5-odd O− one gets

〈O−〉cont = −〈O−〉cont = 0

〈O−S1〉cont = 〈O−S1〉cont

〈δO−〉cont = 〈δO−〉cont

⇒ 〈O−〉 = −a〈O−S1〉cont + a〈δO−〉cont + O(a2)



⇒ γ5-even observables are automatically O(a) improved, while
γ5-odd observables vanish up to O(a) terms.

Remarks:

The cutoff effects are located in the γ5-odd components.
These can be easily identified and projected out for any lattice
field, and the elimination of cutoff effects is then “automatic”.

In fermion regularisation with an exact chiral symmetry
(Ginsparg-Wilson quarks) the γ5-odd fields vanish identically
⇒ no need to project out the odd components.

Aa
µ and Pa have opposite γ5-parity!

⇒ 〈∂µAa
µ(x)Oeven〉 = 2mPCAC︸ ︷︷ ︸

O(a)

〈Pa(x)Oeven〉︸ ︷︷ ︸
O(a)

= O(a2)

i.e. the critical mass need only be defined up to an O(a)
ambiguity.



SF schemes with Wilson quarks and O(a) improvement

previous discussion:
γ5-even observables computed with Wilson quarks in a finite
volume (with some type of periodic boundary conditions) are
automatically O(a) improved at zero quark mass

SF coupling and renormalization factors are computed at zero
quark mass.
distinguish 3 sources for O(a) effects:

1 O(a) boundary effects (expected in any case!); can be
cancelled by inclusion of boundary O(a) counterterms

2 from the bulk action; are cancelled by including the SW/clover
term

3 from the composite operators; can be cancelled by including
O(a) counterterms determined from chiral Ward identities;
difficult for 4-quark operators!

Question: Why do the bulk O(a) counterterms not vanish in the
chiral limit?



Problem: the γ5 field transformation switches the projectors
of the quark b.c.’s:

P±γ5 = γ5P∓

The boundary conditions, like mass terms, break chiral
symmetry and define a direction in chiral flavour space.

⇒ the γ5 transformation yields inequivalent correlation functions
even in the chiral limit,

〈O〉(P±) → 〈O ′〉(P∓)

Possible solution: Give a flavour structure to the
γ5-transformation, for Nf = 2:

ψ → γ5τ
1ψ, ψ → −ψγ5τ1,

and change quark boundary projectors, such that they
commute with γ5τ

1, e.g.

P± = 1
2(1± γ0τ3), Q± = 1

2(1± iγ0γ5τ
3),



SF boundary conditions and chiral rotations

Consider isospin doublets ψ′ and ψ
′

satisfying homogeneous SF
boundary conditions (P± = 1

2(1± γ0),

P+ψ
′(x)|x0=0 = 0, P−ψ

′(x)|x0=T = 0,

ψ
′
(x)P−|x0=0 = 0, ψ

′
(x)P+|x0=T = 0.

perform a chiral field rotation,

ψ′ = exp(iαγ5τ
3/2)ψ, ψ

′
= ψ exp(iαγ5τ

3/2),

the rotated fields satisfy chirally rotated boundary conditions

P+(α)ψ(x)|x0=0 = 0, P−(α)ψ(x)|x0=T = 0,

ψ(x)γ0P−(α)|x0=0 = 0, ψ(x)γ0P+(α)|x0=T = 0,

with the projectors

P±(α) = 1
2

[
1± γ0 exp(iαγ5τ

3)
]
.



SF boundary conditions and chiral rotations

P±(α) = 1
2

[
1± γ0 exp(iαγ5τ

3)
]
.

Special cases of α = 0, π/2:

P±(0) = P±, P±(π/2) ≡ Q̃± = 1
2(1± iγ0γ5τ

3),

The chiral rotation thus introduces a mapping between correlation
functions:

〈O[ψ, ψ̄]〉(P±) = 〈Õ[ψ, ψ̄]〉(P±(α))
with Õ[ψ, ψ̄] = O

[
exp(iαγ5τ

3/2)ψ, ψ̄ exp(iαγ5τ
3/2
]

where boundary quark and anti-quark fields are included by
replacing

ζ̄(x)↔ ψ̄(0, x)P+ ζ(x)↔ P−ψ(0, x)



The chirally rotated Schrödinger functional

For even Nf there is an implementation of the χSF with Wilson
quarks [S.S. ’05–10 ]

implements automatic bulk O(a) improvement

related to standard SF by chiral rotation

Alternative to chiral Ward identities:

Universality relations ⇒ determinations of ZA etc.
Improvement conditions: demand γ5τ

1 odd quantities to
vanish!



Universality checks

The dictionary tells us that e.g.

fA(x0) = guu′
A (x0), fP(x0) = gud

P (x0)

⇒ should hold for renormalized correlation functions! Here:
check that

Z̃AfA(T/2)√
f1

=
Z̃Aguu′

A (T/2)√
guu′
1

, ZPfP(T/2)√
f1

=
ZPg

uu′
P (T/2)√
guu′
1

,

note: Z̃A is not the ZA to normalize the axial current
canonically.



Universality checks, axial current [S. & Leder ’10 ]
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Universality checks, axial density [S. & Leder ’10 ]
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Checks of automatic O(a) improvement [S. & Leder ’10 ]

Check that bulk O(a) counterterms to even operators become
irrelevant (up to O(a2) effects)

choose cA-counterterm in improved axial current
Aµ + cAa∂µP. Should find that

L∂0fP(x0)

fP(x0)
= O(1),

L∂0g
uu′
P (x0)

gud
P (x0)

= O(a)

Note: renormalization constants drop out in ratios!



Checks of automatic O(a) improvement, counterterm ∝ cA
[S. & Leder ’10 ]
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Determination of ZA,V [S. & Leder ’10 ]

Use universality to determine finite Z -factors otherwise determined
from axial Ward identities:

Chiral rotation of currents depends on the flavour structure:

fA = guu′
A = −igud

V

⇒ axial current transforms either to a vector or to an axial
current

universality: correctly renormalized correlation functions
should be equal in continuum limit

assume universality to obtain correct renormalization constant

1 =
ZAguu′

A (T/2

−iZVgud
V (T/2)

⇒ ZA/ZV

vector current: compare conserved to local current:

1 =
ZVgud

V (T/2

gud
Ṽ

(T/2)
⇒ ZV



Determination of ZA [S. & Leder ’10 ]
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Determination of ZV [S. & Leder ’10 ]
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The gradient flow and finite volume couplings (1)

[Lüscher ’10 ff ] Starting from a given gauge potential Aµ(x)
evolve in ”flow time” t:

d

dt
Bµ(x , t) = DνGνµ(x , t), Bµ(x , 0) = Aµ(x),

Gµν = [Dµ,Dν ], Dµ = ∂µ + [Bµ, ·]

The force term on the RHS is the gradient of the Yang-Mills
action;

⇒ The flow drives the gauge field towards the classical minimum
configuration of the Yang-Mills action, hence towards
smoother fields.



The gradient flow and finite volume couplings (2)

[Lüscher & Weisz ’10 ff ]

The flow time t can be interpreted as coordinate of a 5th
dimension, i.e. theory lives in 5-dimensional half space with
Dirichlet boundary condition at t = 0

Renormalization: correlation functions in the five dimensional
theory are finite once the 4-d theory at t = 0 has been
renormalized.

⇒ no new divergences are generated by the flow!

Example: the expectation value of the energy density

〈E (t)〉 = 1
2〈 tr [Gµν(x)Gµν(x)]〉

is well defined and finite for t > 0 provided g0 is renormalized as
usual.



Perturbation theory in MS-coupling α(µ = 1/
√

8t) [Lüscher ’10 ]

〈E (t)〉 =
3

4πt2
α(µ) {1 + k1α(µ) + ...} , k1 = 1.0978+0.0075×Nf

Non-perturbatively:

implement flow on the lattice for link variables:

d

dt
Vµ(x , t) = −g2

0 {∂x ,µSw}Vµ(x , t), Vµ(x , 0) = Uµ(x)

Sw = Wilson’s plaquette action ⇒ “Wilson flow”



Marry Wilson flow with finite volume

Applications of the Wilson flow:

Scale setting, t0 [Lüscher ’10 ]:

t2〈E (t)〉|t=t0 = 0.3

Finite volume schemes: take µ = 1/
√

8t and 1/L in fixed
proportion, µ = c/L with constant c;
use

periodic boundary conditions [Fodor et al ’12 ];
SF boundary conditions [Fritzsch & Ramos ’12 ];
twisted periodic boundary conditions [Ramos ’13 ];



SU(2) YM running coupling with twisted b.c.’s [A. Ramos,
Lattice 2013 ]

Simulations for L/a = 10, 12, 15, 18,20, 24, 30, 36 at
β ∈ [2.75, 12].

Modest statistics: 2048 independent measurements of g2
TGF .

Between 0.15-0.25% precision in g2
TGF for all L/a.

Example: L/a = 36



SU(2) YM running coupling [A. Ramos, Lattice 2013 ]
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Step scaling function [A. Ramos, Lattice 2013 ]

Modest cutoff effects. Starting recursion with u = 7.5.
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Step scaling function [A. Ramos, Lattice 2013 ]

Modest cutoff effects. Starting recursion with u = 7.5.
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g 2
TGF (L) for pure gauge SU(2) [A. Ramos, Lattice 2013 ]
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Conclusions & Outlook Wilson flow

The Wilson flow allows for definition of renormalized quantities
which

are very precisely measurable (small statistical errors);

can be used to set the scale of lattice simulations (t0, w0, cf.
Sommer Lattice ’13);

couple to slow modes in algorithms ⇒ trace autocorrelations
in HMC;

can be combined with renormalization in finite volume &
Schrödinger functional;

⇒ expect precise results for αs over next 2 years!

Generalization to include fermion fields [Lüscher ’13 ]

may lead to better renormalization/improvement conditions;

may solve some notorious problems with power divergent
renormalizations e.g. 4-quark operators, energy-momentum
tensor (cp. del Debbio et al. ’13);

. . ..

⇒ Stay tuned!


