Non-perturbative Renormalization of Lattice QCD Part V/V

Stefan Sint

Trinity College Dublin & NIC@DESY-Zeuthen

Saha Institute of Nuclear Physics

Kolkata, 6 December 2013

- Need for O(a) improvement of Wilson quarks
- On-shell O(a) improvement
- O(a) improvement and chiral symmetry
- Automatic O(a) improvement of massless Wilson fermions

- The chirally rotated Schrödinger functional
- Some tests of automatic O(a) improvement
- The gradient flow
- The gradient flow and finite volume schemes
- An application to SU(2) pure gauge theory

- For chiral symmetry there is no conserved current with Wilson quarks.
- However: expect that chiral symmetry can be restored in the continuum limit!
- \Rightarrow [Bochicchio et al '85]: use continuum chiral Ward identities and impose them as normalisation condition at finite lattice spacing *a*!

Continuum chiral WI's as normalisation conditions

• Define chiral variations:

$$\delta_{\mathrm{A}}^{\mathfrak{a}}(\theta)\psi(x) = i\gamma_{5}\frac{1}{2}\tau^{\mathfrak{a}}\theta(x)\psi(x), \qquad \delta_{\mathrm{A}}^{\mathfrak{a}}(\theta)\overline{\psi}(x) = \overline{\psi}(x)i\gamma_{5}\frac{1}{2}\tau^{\mathfrak{a}}\theta(x)$$

• Derive formal continuum Ward identities assuming that the functional integral can be treated like an ordinary integral:

$$\Rightarrow \qquad \langle \delta^{a}_{A}(\theta) O \rangle = \langle O \delta^{a}_{A}(\theta) S \rangle,$$

$$\begin{split} \delta^{a}_{A}(\theta)S &= -i\int d^{4}x\theta(x)\left(\partial_{\mu}A^{a}_{\mu}(x) - 2mP^{a}(x)\right)\\ A^{a}_{\mu}(x) &= \overline{\psi}(x)\gamma_{\mu}\gamma_{5}\frac{1}{2}\tau^{a}\psi(x), \qquad P^{a}(x) = \overline{\psi}(x)\gamma_{5}\frac{1}{2}\tau^{a}\psi(x) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Shrink the region *R* to a point *x*:

$$\begin{array}{rcl} \langle O_{\mathrm{ext}} \delta^{a}_{\mathrm{A}}(\theta) S \rangle &=& 0 \\ \Rightarrow & \left\langle \partial_{\mu} A^{a}_{\mu}(x) O_{\mathrm{ext}} \right\rangle &=& 2m \left\langle P^{a}(x) O_{\mathrm{ext}} \right\rangle \end{array}$$

• In the continuum the PCAC quark mass

$$m = rac{\left< \partial_{\mu} A^{a}_{\mu}(x) O_{\mathrm{ext}} \right>}{2 \left< P^{a}(x) O_{\mathrm{ext}} \right>}$$

must be independent of the choice for O_{ext} , x, background field,...!

Need for O(a) improvement of Wilson quarks

O(a) artefacts can be quite large with Wilson quarks:

PCAC quark mass from SF correlation functions:

$$m=\frac{\partial_0 f_{\rm A}(x_0)}{2f_{\rm P}(x_0)}$$

 $8^3 \times 16$ lattice, quenched QCD, a = 0.1 fm, 2 different gauge background fields.

> < 同 > < 回 > < 回 >

On-shell O(a) improvement

Recall Symanzik's effective continuum theory from lecture 1

$$egin{array}{rcl} S_{\mathrm{eff}} &=& S_0 + a S_1 + a^2 S_2 + \dots, & S_0 = S_{\mathrm{QCD}}^{\mathrm{cont}} \ S_k &=& \int \mathrm{d}^4 x \, \mathcal{L}_{\mathrm{k}}(x) \end{array}$$

where \mathcal{L}_1 is a linear combination of the fields:

 $\overline{\psi}\sigma_{\mu\nu}F_{\mu\nu}\psi, \quad \overline{\psi}D_{\mu}D_{\mu}\psi, \quad m\,\overline{\psi}D\!\!\!/\psi, \quad m^{2}\overline{\psi}\psi, \quad m\,\mathrm{tr}\left\{F_{\mu\nu}F_{\mu\nu}\right\}$ The action S_{1} appears as insertion in correlation functions

$$G_n(x_1, \dots, x_n) = \langle \phi_0(x_1) \dots \phi_0(x_n) \rangle_{\text{con}} \\ + a \int d^4 y \langle \phi_0(x_1) \dots \phi_0(x_n) \mathcal{L}_1(y) \rangle_{\text{con}} \\ + a \sum_{k=1}^n \langle \phi_0(x_1) \dots \phi_1(x_k) \dots \phi_0(x_n) \rangle_{\text{con}} + O(a^2)$$

On-shell O(a) improvement (1)

Basic idea:

- Introduce counterterms to the *lattice* action and composite operators such that S_1 and ϕ_1 are cancelled in the effective theory
- As all physics can be obtained from on-shell quantitities (spectral quantitities like particle energies or correlation function where arguments are kept at non-vanishing distance) one may use the equations of motion to reduce the number of counterterms
- The contact terms which arise from having y ≈ x_i can be analysed in the OPE and are found to be of the same structure as the counterterms anyway contained in φ₁; this amounts to a redefinition of the counterterms in φ₁.
- After using the equations of motion one remains with:

 $\overline{\psi}\sigma_{\mu\nu}F_{\mu\nu}\psi, \qquad m^{2}\overline{\psi}\psi, \qquad m\,\mathrm{tr}\,\{F_{\mu\nu}F_{\mu\nu}\}$

On-shell O(a) improvement (2)

On-shell O(a) improved Lattice action

• The last two terms are equivalent to a rescaling of the bare mass and coupling $(m_q = m_0 - m_{cr})$:

$$\widetilde{g_0^2} = g_0^2(1+b_g(g_0) a m_{
m q}), \qquad \widetilde{m_{
m q}} = m_{
m q}(1+b_{
m m}(g_0) a m_{
m q})$$

• The first term is the Sheikholeslami-Wohlert or clover term

$$S_{Wilson} o S_{Wilson} + iac_{sw}(g_0)a^4\sum_x \overline{\psi}(x)\sigma_{\mu
u}\hat{F}_{\mu
u}(x)\psi(x)$$

On-shell O(a) improved axial current and density:

$$\begin{array}{lll} (A_{\rm R})^{a}_{\mu} & = & Z_{\rm A}(\tilde{g_{0}}^{2})(1+b_{\rm A}(g_{0})am_{\rm q})\left\{A^{a}_{\mu}+c_{\rm A}(g_{0})\tilde{\partial}_{\mu}P^{a}\right\} \\ (P_{\rm R})^{a} & = & Z_{\rm P}(\tilde{g_{0}}^{2},a\mu)(1+b_{\rm P}(g_{0})am_{\rm q})P^{a} \end{array}$$

On-shell O(a) improvement (3)

- There are 2 counterterms in the massless theory c_{sw} , c_A , the remaining ones (b_g, b_m, b_A, b_P) come with am_q .
- Note: all counterterms are absent in chirally symmetric regularisations!
- \Rightarrow turn this around: impose chiral symmetry to determine c_{sw}, c_{A} non-perturbatively:
 - define bare PCAC quark masses from SF correlation functions

$$m_{\mathrm{R}} = \frac{Z_{\mathrm{A}}(1+b_{\mathrm{A}}am_{\mathrm{q}})}{Z_{\mathrm{P}}(1+b_{\mathrm{P}}am_{\mathrm{q}})}m, \qquad m = \frac{\tilde{\partial}_{0}f_{\mathrm{A}}(x_{0}) + c_{\mathrm{A}}a\partial_{0}^{*}\partial_{0}f_{\mathrm{P}}(x_{0})}{f_{\mathrm{P}}(x_{0})}$$

 At fixed g₀ and am_q ≈ 0 define 3 bare PCAC masses m_{1,2,3} (e.g. by varying the gauge boundary conditions) and impose m₁(c_{sw}, c_A) = m₂(c_{sw}, c_A), m₁(c_{sw}, c_A) = m₃(c_{sw}, c_A) ⇒ c_{sw}, c_A

SF b.c.'s \Rightarrow high sensitivity to c_{sw} & simulations near chiral limit

Results for $c_{\rm sw}$, $N_{\rm f}=4$ [ALPHA '09]

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Before and after O(a) improvement (PCAC masses from SF correlation functions, $8^3 \times 16$ lattice)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Quenched result for the charm quark mass [ALPHA '02]

- The RGI charm quark mass can be defined in various ways
 - starting from the subtracted bare quark mass

 $m_{\mathrm{q,c}} = m_{\mathrm{0,c}} - m_{\mathrm{cr}}$

- starting from the average strange-charm PCAC mass m_{sc}
- starting from the PCAC mass *m_{cc}* for a hypothetical mass degenerate doublet of quarks.
- Tune bare charm quark mass to match the D_s meson mass
- Obtain the corresponding O(a) improved RGI masses:

$$\begin{split} r_0 M_c|_{m_{sc}} &= Z_M r_0 \Big\{ 2m_{sc} \left[1 + (b_A - b_P) \frac{1}{2} (am_{q,c} + am_{q,s}) \right] \\ &- m_s \left[1 + (b_A - b_P) am_{q,s} \right] \Big\}, \\ r_0 M_c|_{m_c} &= Z_M r_0 m_c \left[1 + (b_A - b_P) am_{q,c} \right], \\ r_0 M_c|_{m_{q,c}} &= Z_M Z r_0 m_{q,c} \left[1 + b_m am_{q,c} \right]. \end{split}$$

 N.B.: all O(a) counterterms are known non-perturbatively in the quenched case!

Continuum extrapolation of the quenched RGI charm quark mass

Continuum extrapolation:

$$r_0 M_c = A + B(a^2/r_0^2)$$

 $r_0 = 0.5 \,\mathrm{fm}$

$$M_{
m c} = 1.654(45) \, {
m GeV}$$

 $\overline{m}_{
m c}^{\overline{
m MS}}(\overline{m}_{
m c}) = 1.301(34) \, {
m GeV}$

(日)、

э

After O(a) improvement:

- The ambiguity in $m_{\rm cr}$ is reduced to $O(a^2)$
- Axial current normalisation can be defined up to $O(a^2)$
- Results exist for $c_{\rm sw}, c_{\rm A}$ for quenched and $N_{\rm f}=2,3,4$ and various gauge actions
- On-shell O(a) improvement seems to work; rather economical for spectral quantities (e.g. hadron masses): just need c_{sw}!
- Improvement of quark bilinear operators feasible, four-quark operators difficult
- Non-degenerate quark masses: rather complicated, proliferation of *b*-coefficients [Bhattacharya et al '99 ff];
- However: for small quark masses and fine lattices am_q is small (a few percent at most) and perturbative estimates of improvement coefficients may be good enough!

The Schrödinger functional and O(a) improvement

The presence of the boundaries induces additional O(a) effects:

- counterterms must be local fields of dimension 4 integrated over the boundaries x₀ = 0, T:
- pure gauge theory:

$$\int \mathrm{d}^3 \mathbf{x} \operatorname{tr} \{ F_{0k}(x) F_{0k}(x) \}, \quad \int \mathrm{d}^3 \mathbf{x} \operatorname{tr} \{ F_{kl}(x) F_{kl}(x) \} = 0 \ (\to \text{ b.c.'s})$$

with fermions:

$$\int \mathrm{d}^3 \mathbf{x} \, \overline{\psi}(x) \gamma_0 D_0 \psi(x), \quad \int \mathrm{d}^3 \mathbf{x} \, \overline{\psi}(x) \gamma_k D_k \psi(x),$$

eliminate 2nd counterterm by equation of motion

- ⇒ all boundary O(a) effects can be cancelled by 2 counterterms with coefficients c_t , \tilde{c}_t !
 - In practice use perturbation theory and vary the coefficients in simulations to assess their impact on observables.

Automatic O(a) improvement of massless Wilson quarks [Frezzotti, Rossi '03]

- Assume $m_{\rm PCAC} = 0$, finite volume without boundaries:
- \Rightarrow Symanziks effective continuum action (using eqs. of motion):

$$S_{\mathrm{eff}} = S_0 + aS_1 + \dots, \quad S_0 = \int \mathrm{d}^4 x \, \overline{\psi} D \!\!\!\!/ \psi, \ S_1 = c \int \mathrm{d}^4 x \, \overline{\psi} \sigma_{\mu\nu} F_{\mu\nu} \psi$$

• cutoff dependence of lattice correlation functions:

$$\langle O \rangle = \langle O \rangle^{\text{cont}} - a \langle S_1 O \rangle^{\text{cont}} + a \langle \delta O \rangle^{\text{cont}} + O(a^2).$$

 δO are O(a) counterterms to the composite fields in O, e.g.

$$O = V_{\mu}^{a}(x)A_{\nu}^{b}(y)$$

$$\delta O = c_{V} i\partial_{\nu}T_{\mu\nu}^{a}(x)A_{\nu}^{a}(y) + V_{\mu}^{a}(x)c_{A}\partial_{\nu}P^{b}(y)$$

Automatic O(a) improvement of massless Wilson quarks

 Introduce a γ₅-transformation (non-anomalous for even numbers of quarks):

$$\psi o \gamma_5 \psi, \qquad \overline{\psi} \to -\overline{\psi} \gamma_5$$

• transform Symanzik's effective action and O(a) counterterms

$$S_0 \rightarrow S_0, \qquad S_1 \rightarrow -S_1$$

 Composite operators can be decomposed in γ₅-even and -odd parts:

$$\begin{array}{rcl} O &=& O_+ + O_- \\ O_{\pm} &\to& \pm O &\Rightarrow & \delta O_{\pm} \to \mp \delta O_{\pm} \end{array}$$

• Hence for γ_5 -even O_+ one finds

$$\begin{array}{rcl} \langle O_+ \rangle^{\rm cont} &=& \langle O_+ \rangle^{\rm cont} \\ \langle O_+ S_1 \rangle^{\rm cont} &=& -\langle O_+ S_1 \rangle^{\rm cont} = 0 \\ \langle \delta O_+ \rangle^{\rm cont} &=& -\langle \delta O_+ \rangle^{\rm cont} = 0 \\ \Rightarrow & \langle O_+ \rangle &=& \langle O_+ \rangle^{\rm cont} + O(a^2) \end{array}$$

• while for γ_5 -odd O_- one gets

$$\begin{array}{lll} \langle O_{-} \rangle^{\rm cont} &=& -\langle O_{-} \rangle^{\rm cont} = 0 \\ \langle O_{-}S_{1} \rangle^{\rm cont} &=& \langle O_{-}S_{1} \rangle^{\rm cont} \\ \langle \delta O_{-} \rangle^{\rm cont} &=& \langle \delta O_{-} \rangle^{\rm cont} \\ \Rightarrow & \langle O_{-} \rangle &=& -a \langle O_{-}S_{1} \rangle^{\rm cont} + a \langle \delta O_{-} \rangle^{\rm cont} + O(a^{2}) \end{array}$$

 $\Rightarrow \gamma_5$ -even observables are automatically O(a) improved, while γ_5 -odd observables vanish up to O(a) terms.

Remarks:

- The cutoff effects are located in the γ_5 -odd components. These can be easily identified and projected out for any lattice field, and the elimination of cutoff effects is then "automatic".
- In fermion regularisation with an exact chiral symmetry (Ginsparg-Wilson quarks) the γ_5 -odd fields vanish identically \Rightarrow no need to project out the odd components.
- A^a_μ and P^a have opposite γ_5 -parity!

$$\Rightarrow \qquad \langle \partial_{\mu} A^{a}_{\mu}(x) O_{\text{even}} \rangle = 2 \underbrace{m_{\text{PCAC}}}_{O(a)} \underbrace{\langle P^{a}(x) O_{\text{even}} \rangle}_{O(a)} = O(a^{2})$$

i.e. the critical mass need only be defined up to an O(a) ambiguity.

• previous discussion:

 γ_5 -even observables computed with Wilson quarks in a finite volume (with some type of periodic boundary conditions) are automatically O(a) improved at zero quark mass

• SF coupling and renormalization factors are computed at zero quark mass.

distinguish 3 sources for O(a) effects:

- O(a) boundary effects (expected in any case!); can be cancelled by inclusion of boundary O(a) counterterms
- Ifrom the bulk action; are cancelled by including the SW/clover term
- from the composite operators; can be cancelled by including O(a) counterterms determined from chiral Ward identities; difficult for 4-quark operators!

<u>Question</u>: Why do the bulk O(a) counterterms not vanish in the chiral limit?

 <u>Problem</u>: the γ₅ field transformation switches the projectors of the quark b.c.'s:

$$P_{\pm}\gamma_5 = \gamma_5 P_{\mp}$$

The boundary conditions, like mass terms, break chiral symmetry and define a direction in chiral flavour space.

 $\Rightarrow\,$ the $\gamma_{\rm 5}$ transformation yields inequivalent correlation functions even in the chiral limit,

$$\langle O
angle_{(P_{\pm})}
ightarrow \langle O'
angle_{(P_{\mp})}$$

• <u>Possible solution</u>: Give a flavour structure to the γ_5 -transformation, for $N_f = 2$:

$$\psi \to \gamma_5 \tau^1 \psi, \qquad \overline{\psi} \to -\overline{\psi} \gamma_5 \tau^1,$$

and change quark boundary projectors, such that they commute with $\gamma_5\tau^1,$ e.g.

$$\mathcal{P}_{\pm} = rac{1}{2}(1 \pm \gamma_0 \tau^3), \qquad Q_{\pm} = rac{1}{2}(1 \pm i \gamma_0 \gamma_5 \tau^3),$$

SF boundary conditions and chiral rotations

Consider isospin doublets ψ' and $\overline{\psi}'$ satisfying homogeneous SF boundary conditions ($P_{\pm} = \frac{1}{2}(1 \pm \gamma_0)$,

$$\begin{split} & P_+\psi'(x)|_{x_0=0}=0, \qquad \qquad P_-\psi'(x)|_{x_0=T}=0, \\ & \overline{\psi}'(x)P_-|_{x_0=0}=0, \qquad \qquad \overline{\psi}'(x)P_+|_{x_0=T}=0. \end{split}$$

perform a chiral field rotation,

$$\psi' = \exp(i\alpha\gamma_5\tau^3/2)\psi, \qquad \overline{\psi}' = \overline{\psi}\exp(i\alpha\gamma_5\tau^3/2),$$

the rotated fields satisfy chirally rotated boundary conditions

$$\begin{split} P_+(\alpha)\psi(x)|_{x_0=0} &= 0, \qquad P_-(\alpha)\psi(x)|_{x_0=T} &= 0, \\ \overline{\psi}(x)\gamma_0P_-(\alpha)|_{x_0=0} &= 0, \qquad \overline{\psi}(x)\gamma_0P_+(\alpha)|_{x_0=T} &= 0, \end{split}$$

with the projectors

$$P_{\pm}(\alpha) = \frac{1}{2} \left[1 \pm \gamma_0 \exp(i\alpha\gamma_5\tau^3) \right].$$

SF boundary conditions and chiral rotations

$$P_{\pm}(\alpha) = \frac{1}{2} \left[1 \pm \gamma_0 \exp(i\alpha\gamma_5\tau^3) \right].$$

Special cases of $\alpha = 0, \pi/2$:

$$P_{\pm}(0) = P_{\pm}, \qquad P_{\pm}(\pi/2) \equiv \tilde{Q}_{\pm} = \frac{1}{2}(1 \pm i\gamma_0\gamma_5\tau^3),$$

The chiral rotation thus introduces a mapping between correlation functions:

$$\langle O[\psi,\bar{\psi}]\rangle_{(P_{\pm})} = \langle \tilde{O}[\psi,\bar{\psi}]\rangle_{(P_{\pm}(\alpha))}$$

with $\tilde{O}[\psi,\bar{\psi}] = O\left[\exp(i\alpha\gamma_5\tau^3/2)\psi,\bar{\psi}\exp(i\alpha\gamma_5\tau^3/2)\right]$

where boundary quark and anti-quark fields are included by replacing

$$ar{\zeta}(\mathbf{x}) \leftrightarrow ar{\psi}(0,\mathbf{x}) P_+ \qquad \zeta(\mathbf{x}) \leftrightarrow P_-\psi(0,\mathbf{x})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For even N_f there is an implementation of the χ SF with Wilson quarks [S.S. '05–10]

- implements automatic bulk O(a) improvement
- related to standard SF by chiral rotation
- Alternative to chiral Ward identities:
 - Universality relations \Rightarrow determinations of $Z_{\rm A}$ etc.
 - Improvement conditions: demand $\gamma_5 \tau^1$ odd quantities to vanish!

• The dictionary tells us that e.g.

$$f_{\rm A}(x_0) = g_A^{uu'}(x_0), \qquad f_{\rm P}(x_0) = g_{\rm P}^{ud}(x_0)$$

 \Rightarrow should hold for renormalized correlation functions! Here: check that

$$\frac{\tilde{Z}_{\rm A}f_{\rm A}(T/2)}{\sqrt{f_{\rm I}}} = \frac{\tilde{Z}_{\rm A}g_{\rm A}^{uu'}(T/2)}{\sqrt{g_{\rm I}^{uu'}}}, \qquad \frac{Z_{\rm P}f_{\rm P}(T/2)}{\sqrt{f_{\rm I}}} = \frac{Z_{\rm P}g_{\rm P}^{uu'}(T/2)}{\sqrt{g_{\rm I}^{uu'}}},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• note: $\ddot{Z}_{\rm A}$ is not the $Z_{\rm A}$ to normalize the axial current canonically.

Universality checks, axial current [S. & Leder '10]

Universality checks, axial density [S. & Leder '10]

Check that bulk O(a) counterterms to even operators become irrelevant (up to $O(a^2)$ effects)

• choose c_A -counterterm in improved axial current $A_{\mu} + c_A a \partial_{\mu} P$. Should find that

$$\frac{L\partial_0 f_{\mathrm{P}}(x_0)}{f_{\mathrm{P}}(x_0)} = \mathrm{O}(1), \qquad \frac{L\partial_0 g_{\mathrm{P}}^{uu'}(x_0)}{g_{\mathrm{P}}^{uu}(x_0)} = \mathrm{O}(a)$$

Note: renormalization constants drop out in ratios!

Checks of automatic O(a) improvement, counterterm $\propto c_{\rm A}$ [S. & Leder '10]

Determination of $Z_{A,V}$ [5. & Leder '10]

Use universality to determine finite Z-factors otherwise determined from axial Ward identities:

• Chiral rotation of currents depends on the flavour structure:

$$f_{\rm A} = g_{\rm A}^{uu'} = -ig_{\rm V}^{ud}$$

- $\Rightarrow\,$ axial current transforms either to a vector or to an axial current
 - universality: correctly renormalized correlation functions should be equal in continuum limit
 - assume universality to obtain correct renormalization constant

$$1 = \frac{Z_{\rm A} g_{\rm A}^{uu'}(T/2)}{-i Z_{\rm V} g_{\rm V}^{ud}(T/2)} \quad \Rightarrow \quad Z_{\rm A}/Z_{\rm V}$$

• vector current: compare conserved to local current:

$$1 = \frac{Z_{\rm V} g_{\rm V}^{ud}(T/2)}{g_{\rm V}^{ud}(T/2)} \quad \Rightarrow \quad Z_{\rm V}$$

Determination of Z_A [S. & Leder '10]

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Determination of Z_V [S. & Leder '10]

◆□> ◆□> ◆三> ◆三> ・三 のへの

[Lüscher '10 ff] Starting from a given gauge potential $A_{\mu}(x)$ evolve in "flow time" t:

- The force term on the RHS is the gradient of the Yang-Mills action;
- ⇒ The flow drives the gauge field towards the classical minimum configuration of the Yang-Mills action, hence towards smoother fields.

[Lüscher & Weisz '10 ff]

- The flow time t can be interpreted as coordinate of a 5th dimension, i.e. theory lives in 5-dimensional half space with Dirichlet boundary condition at t = 0
- Renormalization: correlation functions in the five dimensional theory are finite once the 4-d theory at t = 0 has been renormalized.
- $\Rightarrow\,$ no new divergences are generated by the flow!

Example: the expectation value of the energy density

$$\langle E(t) \rangle = \frac{1}{2} \langle \operatorname{tr} [G_{\mu\nu}(x) G_{\mu\nu}(x)] \rangle$$

is well defined and finite for t > 0 provided g_0 is renormalized as usual.

Perturbation theory in $\overline{\mathrm{MS}}$ -coupling $\alpha(\mu = 1/\sqrt{8t})$ [Lüscher '10]

$$\langle E(t) \rangle = \frac{3}{4\pi t^2} \alpha(\mu) \{ 1 + k_1 \alpha(\mu) + ... \}, \quad k_1 = 1.0978 + 0.0075 \times N_{\rm f}$$

Non-perturbatively:

• implement flow on the lattice for link variables:

$$\frac{d}{dt}V_{\mu}(x,t) = -g_0^2 \{\partial_{x,\mu}S_w\} V_{\mu}(x,t), \qquad V_{\mu}(x,0) = U_{\mu}(x)$$

(日) (日) (日) (日) (日) (日) (日) (日)

• S_w = Wilson's plaquette action \Rightarrow "Wilson flow"

Applications of the Wilson flow:

• Scale setting, t₀ [Lüscher '10]:

$$t^2 \langle E(t) \rangle |_{t=t_0} = 0.3$$

- Finite volume schemes: take $\mu = 1/\sqrt{8t}$ and 1/L in fixed proportion, $\mu = c/L$ with constant c; use
 - periodic boundary conditions [Fodor et al '12];
 - SF boundary conditions [Fritzsch & Ramos '12];
 - twisted periodic boundary conditions [Ramos '13];

SU(2) YM running coupling with twisted b.c.'s [A. Ramos, Lattice 2013]

- Simulations for L/a = 10, 12, 15, 18, 20, 24, 30, 36 at $\beta \in [2.75, 12]$.
- Modest statistics: 2048 independent measurements of g_{TGF}^2 .

- Between 0.15-0.25% precision in g_{TGF}^2 for all L/a.
- Example: L/a = 36

SU(2) YM running coupling [A. Ramos, Lattice 2013]

β	$g_{TGF}^2(L)$
12.0	0.41078(64)
10.0	0.51809(83)
8.0	0.6987(11)
7.0	0.8497(13)
6.0	1.0819(18)
5.0	1.4968(25)
4.0	2.4465(44)
3.75	2.9277(54)
3.5	3.6494(69)
3.25	4.8568(99)
3.0	7.587(20)
2.9	10.610(32)
2.8	16.752(47)
2.75	22.168(59)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Step scaling function [A. Ramos, Lattice 2013]

• Modest cutoff effects. Starting recursion with u = 7.5.

Step scaling function [A. Ramos, Lattice 2013]

• Modest cutoff effects. Starting recursion with u = 7.5.

$g_{TGF}^2(L)$ for pure gauge SU(2) [A. Ramos, Lattice 2013]

Since $\Lambda = \mu(b_0 g^2(\mu))^{-b1/2b_0^2} e^{-1/2b_0 g^2(\mu)} e^{-\int_0^{g^2(\mu)} \left\{ \frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right\}}$ and $\mu = 1/cL$. $\Lambda L_{\max} = 1.509(44) \quad (@g_{TGF}^2(L) = 1.7948(93)) = 0.000$

Conclusions & Outlook Wilson flow

The Wilson flow allows for definition of renormalized quantities which

- are very precisely measurable (small statistical errors);
- can be used to set the scale of lattice simulations (t₀, w₀, cf. Sommer Lattice '13);
- couple to slow modes in algorithms \Rightarrow trace autocorrelations in HMC;
- can be combined with renormalization in finite volume & Schrödinger functional;
- \Rightarrow expect precise results for α_{s} over next 2 years!
- Generalization to include fermion fields [Lüscher '13]
 - may lead to better renormalization/improvement conditions;
 - may solve some notorious problems with power divergent renormalizations e.g. 4-quark operators, energy-momentum tensor (cp. del Debbio et al. '13);
 -

 \Rightarrow Stay tuned!