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Definition of the SF coupling [Lüscher et al. ’92 ]

Choose abelian and spatially constant boundary gauge fields:

Ck =
i

L

φ1 0 0
0 φ2 0
0 0 φ3

 , C ′k =
i

L

φ′1 0 0
0 φ′2 0
0 0 φ′3

 , k = 1, 2, 3,

with angles taken to be linear functions of a parameter η:

φ1 = η − π
3 , φ′1 = −φ1 − 4π

3 ,

φ2 = −1
2η, φ′2 = −φ3 + 2π

3 ,

φ3 = −1
2η + π

3 , φ′3 = −φ2 + 2π
3 .

The gauge action has an absolute minimum for:

B0 = 0, Bk =
[
x0C

′
k + (L− x0)Ck

]
/L, k = 1, 2, 3.

i.e. other gauge fields with the same action must be gauge
equivalent to Bµ
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Definition of the SF coupling

Define the effective action of the induced background field

Γ[B] = − lnZ[C ,C ′]

In perturbation theory the effective action has the expansion

Γ[B] ∼ g−2
0 Γ0[B] + Γ1[B] + O(g2

0 )

Definition of the SF coupling:

ḡ2(L) =
∂ηΓ0[B]|η=0

∂ηΓ[B]|η=0

∣∣∣∣
mq,i=0

⇒ ḡ2(L) = g2
0 + O(g4

0 )

b.c.’s induce a constant colour electric field:

G0k = ∂0Bk =
Ck − C ′k

L

⇒ The coupling is defined as “response coefficient” to a
variation of a constant colour electric field.
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Renormalisation of operators in the SF scheme (1)

Example: renormalisation of Pa = ψγ5
τ a

2 ψ:

In this case we set Ck = C ′k = 0, i.e. trivial background field
B = 0

Define correlation functions

fP(x0) = −1
3〈O

aPa(x)〉, f1 = − 1
3L6 〈OaO′a〉
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Renormalisation of operators in the SF scheme (2)

Renormalised correlation functions:

fP,R(x0) = Z 2
ζ ZP fP(x0), f1,R = Z 4

ζ f1,

set T = L, m = 0, x0 = L/2, and impose

ZP(g0, L/a)
fP(L/2)√

f1
=

fP(L/2)√
f1

∣∣∣∣
g0=0

similarity with MOM schemes: the renormalised amplitude at
µ = L−1 equals its tree-level expression

The ratio is formed to cancel any Zζ .

definition of running quark mass: m(L) = Z−1
P (L)m.
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Step Scaling Functions

The aim is to construct the Step Scaling Functions σ(u) and
σP(u):

σ(u) = ḡ2(2L)|u=ḡ2(L),

σP(u) = lim
a→0

ZP(g0, 2L/a)

ZP(g0, L/a)

∣∣∣∣
u=ḡ2(L)

These are related to the usual RG functions:∫ √u
√
σ(u)

dg

β(g)
= ln 2 σP(u) = exp

∫ √u
√
σ(u)

τ(g)

β(g)
dg

One thus considers a change of scale by a finite factor s = 2;
RG functions tell us what happens for infinitesimal scale
changes.
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Lattice approximants Σ(u, a/L) for σ(u)

choose g0 and L/a = 4,
measure ḡ2(L) = u (this
sets the value of u)

double the lattice and
measure

Σ(u, 1/4) = ḡ2(2L)

now choose L/a = 6 and
tune g ′0 such that ḡ2(L) = u
is satisfied

double the lattice and
measure

Σ(u, 1/6) = ḡ2(2L)

and so on ...
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Continuum extrapolation of the SSF [ALPHA ’05 ]
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The SSF in the continuum limit

[ALPHA coll., Della Morte et al ’05 ]
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The running of the SF coupling

[ALPHA coll., Della Morte et al ’05 ]
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Determination of the Λ-parameter

The formula

Λ = µ (b0ḡ
2)−b1/2b2

0 exp

{
− 1

2b0ḡ2

}
× exp

{
−
∫ ḡ

0
dx

[
1

β(x)
+

1

b0x3
− b1

b2
0x

]}
holds for any value of µ. We may use it at Lmin to obtain

ΛLmin = f (ḡ(Lmin))

The function f (g) can be evaluated at g = ḡ(Lmin) deep in
the perturbative region. The integral in the exponent∫ ḡ

0
dx

[
b2b0 − b2

1

b3
0

x + O(x3)

]
=

b2b0 − b2
1

2b3
0

ḡ2 + O(ḡ4)

may thus be evaluated using the β-function at 3-loop order.
Since Lmax = 2nLmin one knows LmaxΛ
still need FπLmax
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Matching to a low energy scale

Ideally one would like to compute e.g. FπΛ, and take
Fπ = 132MeV from experiment

What is required? The scale Lmax is implicitly defined:

ḡ2(Lmax) = 4.84 ⇒ (Lmax/a)(g0)

Setting Lmax/a = 6, 8, 10, . . . one then finds corresponding
values of the bare coupling (at fixed g0 some interpolation of
Lmax/a will be necessary instead)
One must then be able to compute aFπ in a large volume
simulation at the very same values of the bare coupling:

LmaxFπ = lim
g0→0

(Lmax/a)(g0)(aFπ)(g0)

One thus needs a range of g0 where both can be computed,
aFπ and ḡ(Lmax)
Remark: intermediate results are often quoted in terms of
Sommer’s scale r0, rather than Fπ.
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Matching to a low energy scale

[Alpha collab. ’12 ] Extrapolate the kaon decay constant times L1

to the continuum (analogous FπLmax)
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Results

The scale r0 [R. Sommer ’93 ] is obtained from the force F (r)
between static quark and antiquark separated by a distance r :

r2
0F (r0) = 1.65

The r.h.s. was chosen so that phenomenological estimates
from potential models yield r0 = 0.5 fm.

Recent result for Nf = 2 ([ALPHA ’12 ]): FK = 155MeV
implies r0 = 0.503(10) fm (at physical pion mass!).

Results for Λ using r0 = 0.5 fm [ALPHA ’99-’12 ]

Λ
(2)

MS
r0 = 0.789(52), Λ

(2)

MS
= 310(20)MeV

Λ
(0)

MS
r0 = 0.602(48), Λ

(0)

MS
= 238(19)MeV
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The running quark mass

Coupled evolution of the running mass and the coupling:

m(2L) = σm(u)m(L), σm(u) = 1/σP

ḡ2(2L) = σ(u)

Once the running coupling is known in a range [u0, un],

u0 = ḡ2(Lmin), uk = ḡ2(2kLmin), k = 1, 2, . . . , n

determine σm(u) for the same range of couplings: evolution
of quark mass and coupling recursively

m(2kLmin)/m(2k−1Lmin) = σm(uk), k = 1, 2, . . . , n

one obtains m(2Lmax)/m(Lmin)

Extract m(Lmin)/M using PT as for Λ-parameter
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Running mass in the SF scheme [ALPHA ’05 ]
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Relation to bare quark masses

In practice with Wilson type quarks, one avoids the additive
renormalisation of the bare quark mass parameter by replacing
it by a measured bare mass mPCAC from the (bare) PCAC
relation:

mPCAC
def
=
〈∂µAa

µ(x)O〉
2〈Pa(x)O〉

The running quark mass is then related to mPCAC

m(L) = Z−1
P (g0, L/a)ZA(g0)︸ ︷︷ ︸

known factors

mPCAC(g0)︸ ︷︷ ︸
measured

,

Combine results,

M = ZM(g0)mPCAC(g0)

and take the continuum limit g0 → 0.
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Strange quark mass

The most recent Nf = 2 result for the strange quark mass using
this strategy ([ALPHA ’12 ]):

Ms = 138(3)(1)MeV ⇒ mMS(µ = 2GeV) = 102(3)(1)MeV

Quoted errors are statistical and systematic;

Note: Except for quenching of the strange quark ALL
systematic errors have been addressed!
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Concluding remarks

The recursive finite volume technology has completely
eliminated the problem with large scale differences. The RG
running is determined in the continuum limit and universal
(i.e. regularisation independent)

To obtain physical results one needs to perform a matching
calculation at a low energy scale: it is crucial to have a range
in bare couplings where both, the renormalisation conditions
and the hadronic input can be computed

Whether perturbation theory for the running
coupling/operator is working well or not down to low scales is
not so important; you would not know this beforehand! What
error estimate would you have given?!

Many operator renormalisation problems have been treated
already; the technique can be generalised to operators
containing static quarks (cf. R. Sommer’s Nara lectures).
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Running of the BK four-quark operator in SF scheme

Quenched approximation [ALPHA collab. ’05 ]
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Continuum vs. lattice symmetries

On the lattice symmetries are typically reduced with respect to the
continuum. Examples are

1 Space-Time symmetries: the Euclidean O(4) rotations are
reduced to the O(4,ZZ) group of the hypercubic lattice. Other
lattice geometries are possible, even random lattices have
been tried.

2 Supersymmetry: only partially realisable on the lattice
3 Chiral and Flavour symmetries:

staggered quarks: only a U(1)×U(1) symmetry remains
Wilson quarks: an exact SU(Nf)V
twisted mass Wilson quarks: various U(1) symmetries (both
axial and vector)
overlap/Neuberger quarks: complete continuum symmetries!
Domain Wall quarks: (negligibly ?) small violations of axial
symmetries; consequences are analysed like for Wilson quarks

Case study: chiral and flavour symmetries with Wilson type quarks
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Exact lattice Ward identities (1)

Euclidean action S = Sf + Sg:

Sf = a4
∑
x

ψ(x) (DW + m0)ψ(x), Sg = 1
g2

0

∑
µ,ν

tr {1− Pµν(x)}

DW = 1
2

{(
∇µ +∇∗µ

)
γµ − a∇∗µ∇µ

}
Isospin transformations (Nf = 2, τ1,2,3 Pauli matrices):

ψ(x) → ψ′(x) = exp
(
iθ(x) 1

2τ
a
)
ψ(x) ≈ (1 + δaV(θ))ψ(x),

ψ(x) → ψ
′
(x) = ψ(x) exp

(
−iθ(x) 1

2τ
a
)
ψ(x) ≈ (1 + δaV(θ))ψ(x)

Perform change of variables in the functional integral and expand
in θ

〈O[ψ,ψ,U]〉 = Z−1

∫
D[ψ,ψ]D[U]e−SO[ψ,ψ,U].

Due to D[ψ,ψ] = D[ψ′, ψ
′
] one finds the vector Ward identity

〈δaV(θ)O〉 = 〈OδaV(θ)S〉
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Exact lattice Ward identities (2)

Variation of the action, Noether current:

δaV(θ)S = −ia4
∑
x

θ(x)∂∗µṼ
a
µ (x)

Ṽ a
µ (x) = ψ(x)(γµ − 1)

τ a

4
U(x , µ)ψ(x + aµ̂)

+ψ(x + aµ̂)(γµ + 1)
τ a

4
U(x , µ)†ψ(x)

Choose region R and θ:

R = {x : t1 < x0 ≤ t2}, θ(x) =

{
1 if x ∈ R

0 otherwise

Stefan Sint Non-perturbative Renormalization of Lattice QCD



Exact lattice Ward identities (3)

if O = Oext is localised outside R:

0 = 〈Oextiδ
a
V(θ)S〉 = a4

t2∑
x0=t1+a

∑
x

〈Oext∂
∗
µṼ

a
µ (x)〉

= a

t2∑
x0=t1+a

∂∗0〈OextQ
a
V(x0)〉

= 〈OextQ
a
V(t2)〉 − 〈OextQ

a
V(t1)〉

i.e. the vector charge is time-independent;
This expresses the exact vector symmetry on the lattice;
N.B.: These are exact identities between lattice correlation
functions!
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Exact lattice Ward identities (4)

Choosing O = OextṼ
b
µ (y), with y ∈ R:

iεabc
〈
OextṼ

c
k (y)

〉
=

〈
OextṼ

b
k (y) [Qa

V(t2)− Qa
V(t1)]

〉
iεabc

〈
OextQ

c
V(y0)

〉
=

〈
OextQ

b
V(y0) [Qa

V(t2)− Qa
V(t1)]

〉

N.B. The RHS does not vanish since the time ordering
matters: t1 < y0 and t2 > y0

Constitutes Euclidean version of charge algebra!
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Exact lattice Ward identities (5)

implies that the Noether current Ṽ a
µ is protected against

renormalisation; if we admit a renormalisation constant ZṼ it
follows that Z 2

Ṽ
= Z

Ṽ
hence ZṼ = 1; its anomalous dimension

vanishes!

Any other definition of a lattice current, e.g. the local current

V a
µ (x) = ψ(x)γµγ5ψ(x), (VR)aµ = ZVV

a
µ

can be renormalised by comparing with the conserved current.
Its anomalous dimension must vanish, i.e.

ZV = ZV(g0)
g0→0∼ 1 +

∞∑
n=1

Z
(n)
V g2n

0 .
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Continuum chiral WI’s as normalisation conditions

For chiral symmetry there is no conserved current with Wilson
quarks.

However: expect that chiral symmetry can be restored in the
continuum limit!

⇒ [Bochicchio et al ’85 ]: use continuum chiral Ward identities
and impose them as normalisation condition at finite lattice
spacing a!
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Continuum chiral WI’s as normalisation conditions

Define chiral variations:

δaA(θ)ψ(x) = iγ5
1
2τ

aθ(x)ψ(x), δaA(θ)ψ(x) = ψ(x)iγ5
1
2τ

aθ(x)

Derive formal continuum Ward identities assuming that the
functional integral can be treated like an ordinary integral:

⇒ 〈δaA(θ)O〉 = 〈OδaA(θ)S〉,

δaA(θ)S = −i
∫

d4xθ(x)
(
∂µA

a
µ(x)− 2mPa(x)

)
Aa
µ(x) = ψ(x)γµγ5

1
2τ

aψ(x), Pa(x) = ψ(x)γ5
1
2τ

aψ(x)
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Simplest chiral WI: the PCAC relation (1)

Shrink the region R to a point x :

〈Oextδ
a
A(θ)S〉 = 0

⇒
〈
∂µA

a
µ(x)Oext

〉
= 2m 〈Pa(x)Oext〉

The PCAC relation implies that chiral symmetry is restored in
the chiral limit.

Stefan Sint Non-perturbative Renormalization of Lattice QCD



Simplest chiral WI: the PCAC relation (2)

Impose PCAC on Wilson quarks at fixed a: define a bare
PCAC mass:

m =

〈
∂µA

a
µ(x)Oext

〉
〈Pa(x)Oext〉

A renormalised quark mass can thus be written in two ways

mR = ZAZ
−1
P m = Zm(m0−mcr) ⇒ m = ZmZPZ

−1
A (m0−mcr)

⇒ The critical mass can be determined by measuring the bare
PCAC mass m as a function of m0 and extra/interpolation to
m = 0.

Note: m is only defined up to O(a); any change in Oext will
lead to O(a) differences.
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Determination of the critical mass

PCAC quark mass from
SF correlation functions:

m =
∂0fA(x0)

2fP(x0)

83 × 16 lattice, quenched
QCD, a = 0.1 fm
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More chiral WI’s: axial current normalisation

At m = 0 we can derive the Euclidean current algebra (in
finite volume!):

iεabc
〈
OextQ

c
V(y0)

〉
=
〈
OextQ

b
A(y0) [Qa

A(t2)− Qa
A(t1)]

〉
Imposing this continuum identity on the lattice (at m = 0)
fixes the normalisation of the axial current

(AR)aµ = ZA(g0)Aa
µ, ZA(g0)

g0→0∼ 1 +
∞∑
n=1

Z
(n)
A g2n

0 .

Note: When changing the external fields Oext, the result for
ZA will change by terms of O(a).

The PCAC relation and the charge algebra become operator
identities in Minkowski space. Changing Oext corresponds to
looking at different matrix elements of these operator
identities. On the lattice these must be equal up to O(a)
terms.
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Axial current normalisation with Wilson quarks

ZA in quenched approximation [Lüscher et al. ’96, Leder & S ’10 ]
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Similar results for Nf = 2, 3 by ALPHA collab.
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