Non-perturbative Renormalization of Lattice QCD Part IV/V

Stefan Sint

Trinity College Dublin & NIC@DESY-Zeuthen

Saha Institute of Nuclear Physics

Kolkata, 5 December 2013

・ 同 ト ・ ヨ ト ・ ヨ ト

- The coupling in the Schrödinger functional scheme
- SF schemes for composite operators (\rightarrow mass renormalization)
- Step scaling functions and how to get them from lattice approximants
- Some results by the ALPHA collaboration
- Symmetries and Ward identities
- Wilson quarks and chiral Ward identities

同下 イヨト イヨト

Definition of the SF coupling [Lüscher et al. '92]

• Choose abelian and spatially constant boundary gauge fields:

$$C_{k} = \frac{i}{L} \begin{pmatrix} \phi_{1} & 0 & 0 \\ 0 & \phi_{2} & 0 \\ 0 & 0 & \phi_{3} \end{pmatrix}, \qquad C_{k}' = \frac{i}{L} \begin{pmatrix} \phi_{1}' & 0 & 0 \\ 0 & \phi_{2}' & 0 \\ 0 & 0 & \phi_{3}' \end{pmatrix}, \quad k = 1, 2, 3$$

• with angles taken to be linear functions of a parameter η :

$$\begin{split} \phi_1 &= \eta - \frac{\pi}{3}, & \phi_1' &= -\phi_1 - \frac{4\pi}{3}, \\ \phi_2 &= -\frac{1}{2}\eta, & \phi_2' &= -\phi_3 + \frac{2\pi}{3}, \\ \phi_3 &= -\frac{1}{2}\eta + \frac{\pi}{3}, & \phi_3' &= -\phi_2 + \frac{2\pi}{3}. \end{split}$$

• The gauge action has an absolute minimum for:

$$B_0 = 0,$$
 $B_k = [x_0C'_k + (L - x_0)C_k]/L,$ $k = 1, 2, 3.$

i.e. other gauge fields with the same action must be gauge equivalent to $B_{\boldsymbol{\mu}}$

Definition of the SF coupling

- Define the effective action of the induced background field $\Gamma[B] = -\ln \mathcal{Z}[C, C']$
- In perturbation theory the effective action has the expansion

$$\Gamma[B] ~~\sim~~ g_0^{-2} \Gamma_0[B] + \Gamma_1[B] + O(g_0^2)$$

• Definition of the SF coupling:

$$\bar{g}^{2}(L) = \left. \frac{\partial_{\eta} \Gamma_{0}[B]|_{\eta=0}}{\partial_{\eta} \Gamma[B]|_{\eta=0}} \right|_{m_{q,i}=0} \qquad \Rightarrow \quad \bar{g}^{2}(L) = g_{0}^{2} + \mathcal{O}(g_{0}^{4})$$

• b.c.'s induce a constant colour electric field:

$$G_{0k} = \partial_0 B_k = \frac{C_k - C'_k}{L}$$

⇒ The coupling is defined as "response coefficient" to a variation of a constant colour electric field.

Renormalisation of operators in the SF scheme (1)

Example: renormalisation of $P^a = \overline{\psi}\gamma_5 \frac{\tau^a}{2}\psi$:

- In this case we set $C_k = C'_k = 0$, i.e. trivial background field B = 0
- Define correlation functions

$$f_{\mathrm{P}}(x_0) = -\frac{1}{3} \langle \mathcal{O}^a P^a(x) \rangle, \qquad f_1 = -\frac{1}{3L^6} \langle \mathcal{O}^a \mathcal{O}'^a \rangle$$

• Renormalised correlation functions:

$$f_{\mathrm{P,R}}(x_0) = Z_{\zeta}^2 Z_P f_{\mathrm{P}}(x_0), \qquad f_{1,R} = Z_{\zeta}^4 f_1,$$

set T = L, m = 0, $x_0 = L/2$, and impose

$$Z_{\rm P}(g_0,L/a)rac{f_{
m P}(L/2)}{\sqrt{f_1}} = \left.rac{f_{
m P}(L/2)}{\sqrt{f_1}}
ight|_{g_0=0}$$

- similarity with MOM schemes: the renormalised amplitude at $\mu = L^{-1}$ equals its tree-level expression
- The ratio is formed to cancel any Z_{ζ} .
- definition of running quark mass: $\overline{m}(L) = Z_{P}^{-1}(L)m$.

Step Scaling Functions

• The aim is to construct the Step Scaling Functions $\sigma(u)$ and $\sigma_{\rm P}(u)$:

$$\sigma(u) = \bar{g}^2(2L)|_{u=\bar{g}^2(L)},$$

$$\sigma_{\mathrm{P}}(u) = \lim_{a \to 0} \frac{Z_{\mathrm{P}}(g_0, 2L/a)}{Z_{\mathrm{P}}(g_0, L/a)}\Big|_{u=\bar{g}^2(L)}$$

• These are related to the usual RG functions:

$$\int_{\sqrt{\sigma(u)}}^{\sqrt{u}} \frac{\mathrm{d}g}{\beta(g)} = \ln 2 \qquad \sigma_{\mathrm{P}}(u) = \exp \int_{\sqrt{\sigma(u)}}^{\sqrt{u}} \frac{\tau(g)}{\beta(g)} \mathrm{d}g$$

 One thus considers a change of scale by a finite factor s = 2; RG functions tell us what happens for infinitesimal scale changes.

(日) (日) (日)

3

Lattice approximants $\Sigma(u, a/L)$ for $\sigma(u)$

- choose g_0 and L/a = 4, measure $\bar{g}^2(L) = u$ (this sets the value of u)
- double the lattice and measure

 $\Sigma(u,1/4)=\bar{g}^2(2L)$

- now choose L/a = 6 and tune g'_0 such that $\bar{g}^2(L) = u$ is satisfied
- double the lattice and measure

$$\Sigma(u,1/6)=\bar{g}^2(2L)$$

and so on ...

 $\overline{g}^2 = u$

g₀²

 $\Sigma(2,u,1/6)$

Continuum extrapolation of the SSF [ALPHA '05]

Stefan Sint Non-perturbative Renormalization of Lattice QCD

-

э

The SSF in the continuum limit

[ALPHA coll., Della Morte et al '05]

Stefan Sint Non-perturbative Renormalization of Lattice QCD

Determination of the A-parameter

• The formula

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} \exp\left\{-\frac{1}{2b_0 \bar{g}^2}\right\} \\ \times \exp\left\{-\int_0^{\bar{g}} \mathrm{d}x \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x}\right]\right\}$$

holds for any value of $\mu.$ We may use it at ${\it L}_{\rm min}$ to obtain

$$\Lambda L_{\min} = f(\bar{g}(L_{\min}))$$

• The function f(g) can be evaluated at $g = \bar{g}(L_{\min})$ deep in the perturbative region. The integral in the exponent

$$\int_0^{\bar{g}} \mathrm{d}x \left[\frac{b_2 b_0 - b_1^2}{b_0^3} x + \mathcal{O}(x^3) \right] = \frac{b_2 b_0 - b_1^2}{2b_0^3} \bar{g}^2 + \mathcal{O}(\bar{g}^4)$$

may thus be evaluated using the $\beta\text{-function}$ at 3-loop order.

- Since $L_{\max} = 2^n L_{\min}$ one knows $L_{\max} \Lambda$
- still need $F_{\pi}L_{\max}$

Matching to a low energy scale

Ideally one would like to compute e.g. $F_{\pi}\Lambda$, and take $F_{\pi}=132{
m MeV}$ from experiment

 \bullet What is required? The scale ${\it L}_{\rm max}$ is implicitly defined:

$$ar{g}^2(L_{
m max})=4.84 \qquad \Rightarrow \qquad (L_{
m max}/a)(g_0)$$

Setting $L_{\rm max}/a = 6, 8, 10, \ldots$ one then finds corresponding values of the bare coupling (at fixed g_0 some interpolation of $L_{\rm max}/a$ will be necessary instead)

 One must then be able to compute aF_π in a large volume simulation at the very same values of the bare coupling:

$$L_{\max}F_{\pi} = \lim_{g_0 \to 0} (L_{\max}/a)(g_0)(aF_{\pi})(g_0)$$

- One thus needs a range of g_0 where both can be computed, aF_π and $\bar{g}(L_{\max})$
- Remark: intermediate results are often quoted in terms of Sommer's scale r₀, rather than F_π.

[Alpha collab. '12] Extrapolate the kaon decay constant times L_1 to the continuum (analogous $F_{\pi}L_{max}$)

Results

• The scale r_0 [R. Sommer '93] is obtained from the force F(r) between static quark and antiquark separated by a distance r:

$$r_0^2 F(r_0) = 1.65$$

The r.h.s. was chosen so that phenomenological estimates from potential models yield $r_0 = 0.5 \text{ fm}$.

- Recent result for $N_{\rm f} = 2$ ([ALPHA '12]): $F_{\rm K} = 155 \, {\rm MeV}$ implies $r_0 = 0.503(10) \, {\rm fm}$ (at physical pion mass!).
- Results for Λ using $r_0 = 0.5 \text{ fm} [\text{ALPHA '99-'12}]$

$$\begin{split} &\Lambda^{(2)}_{\overline{\mathrm{MS}}} r_0 &= 0.789(52), \qquad \Lambda^{(2)}_{\overline{\mathrm{MS}}} = 310(20) \, \mathrm{MeV} \\ &\Lambda^{(0)}_{\overline{\mathrm{MS}}} r_0 &= 0.602(48), \qquad \Lambda^{(0)}_{\overline{\mathrm{MS}}} = 238(19) \, \mathrm{MeV} \end{split}$$

(日本)

The running quark mass

• Coupled evolution of the running mass and the coupling:

$$\overline{m}(2L) = \sigma_m(u)\overline{m}(L), \qquad \sigma_m(u) = 1/\sigma_{\rm P}$$

 $\overline{g}^2(2L) = \sigma(u)$

• Once the running coupling is known in a range [u₀, u_n],

$$u_0 = \bar{g}^2(L_{\min}), \quad u_k = \bar{g}^2(2^k L_{\min}), k = 1, 2, \dots, n$$

determine $\sigma_m(u)$ for the same range of couplings: evolution of quark mass and coupling recursively

$$\overline{m}(2^k L_{\min})/\overline{m}(2^{k-1}L_{\min}) = \sigma_m(u_k), \qquad k = 1, 2, \dots, n$$

- one obtains $\overline{m}(2L_{\max})/\overline{m}(L_{\min})$
- Extract $\overline{m}(L_{\min})/M$ using PT as for Λ -parameter

Running mass in the SF scheme [ALPHA '05]

3

Relation to bare quark masses

• In practice with Wilson type quarks, one avoids the additive renormalisation of the bare quark mass parameter by replacing it by a *measured* bare mass m_{PCAC} from the (bare) PCAC relation:

$$m_{
m PCAC} \stackrel{
m def}{=} rac{\langle \partial_\mu A^a_\mu(x) O
angle}{2 \langle P^a(x) O
angle}$$

• The running quark mass is then related to $m_{
m PCAC}$

$$\overline{m}(L) = \underbrace{Z_{\mathrm{P}}^{-1}(g_0, L/a) Z_{\mathrm{A}}(g_0)}_{\text{known factors}} \underbrace{m_{\mathrm{PCAC}}(g_0)}_{\text{measured}},$$

Combine results,

$$M = Z_M(g_0)m_{\rm PCAC}(g_0)$$

and take the continuum limit $g_0 \rightarrow 0$.

The most recent $N_{\rm f}=2$ result for the strange quark mass using this strategy ([ALPHA '12]):

 $M_{s} = 138(3)(1) \operatorname{MeV} \quad \Rightarrow \quad \overline{m}^{\overline{\mathrm{MS}}}(\mu = 2 \operatorname{GeV}) = 102(3)(1) \operatorname{MeV}$

- Quoted errors are statistical and systematic;
- <u>Note</u>: Except for quenching of the strange quark ALL systematic errors have been addressed!

(日本) (日本) (日本)

Concluding remarks

- The recursive finite volume technology has completely eliminated the problem with large scale differences. The RG running is determined in the continuum limit and universal (i.e. regularisation independent)
- To obtain physical results one needs to perform a matching calculation at a low energy scale: it is crucial to have a range in bare couplings where both, the renormalisation conditions and the hadronic input can be computed
- Whether perturbation theory for the running coupling/operator is working well or not down to low scales is not so important; you would not know this beforehand! What error estimate would you have given?!
- Many operator renormalisation problems have been treated already; the technique can be generalised to operators containing static quarks (cf. R. Sommer's Nara lectures).

Э

Running of the $B_{\mathcal{K}}$ four-quark operator in SF scheme

Quenched approximation [ALPHA collab. '05]

On the lattice symmetries are typically reduced with respect to the continuum. Examples are

- Space-Time symmetries: the Euclidean O(4) rotations are reduced to the O(4,ZZ) group of the hypercubic lattice. Other lattice geometries are possible, even random lattices have been tried.
- ② Supersymmetry: only partially realisable on the lattice
- **③** Chiral and Flavour symmetries:
 - $\bullet\,$ staggered quarks: only a U(1)×U(1) symmetry remains
 - \bullet Wilson quarks: an exact ${\it SU(N_{\rm f})_{\rm V}}$
 - twisted mass Wilson quarks: various U(1) symmetries (both axial and vector)
 - overlap/Neuberger quarks: complete continuum symmetries!
 - Domain Wall quarks: (negligibly ?) small violations of axial symmetries; consequences are analysed like for Wilson quarks

Case study: chiral and flavour symmetries with Wilson type quarks

Exact lattice Ward identities (1)

Euclidean action $S = S_{\rm f} + S_{\rm g}$:

$$S_{\rm f} = a^4 \sum_{x} \overline{\psi}(x) \left(D_W + m_0 \right) \psi(x), \qquad S_{\rm g} = \frac{1}{g_0^2} \sum_{\mu, \nu} {
m tr} \left\{ 1 - P_{\mu\nu}(x) \right\}$$

$$D_W = \frac{1}{2} \left\{ \left(\nabla_{\mu} + \nabla^*_{\mu} \right) \gamma_{\mu} - a \nabla^*_{\mu} \nabla_{\mu} \right\}$$

Isospin transformations ($N_{
m f}=$ 2, $au^{1,2,3}$ Pauli matrices):

$$\begin{split} \psi(x) &\to \psi'(x) = \exp\left(i\theta(x)\frac{1}{2}\tau^{a}\right)\psi(x) \approx \left(1+\delta_{\mathrm{V}}^{a}(\theta)\right)\psi(x),\\ \overline{\psi}(x) &\to \overline{\psi}'(x) = \overline{\psi}(x)\exp\left(-i\theta(x)\frac{1}{2}\tau^{a}\right)\psi(x) \approx \left(1+\delta_{\mathrm{V}}^{a}(\theta)\right)\overline{\psi}(x) \end{split}$$

Perform change of variables in the functional integral and expand in $\boldsymbol{\theta}$

$$\langle O[\psi,\overline{\psi},U]\rangle = Z^{-1}\int D[\psi,\overline{\psi}]D[U]\mathrm{e}^{-S}O[\psi,\overline{\psi},U].$$

Due to $D[\psi, \overline{\psi}] = D[\psi', \overline{\psi}']$ one finds the vector Ward identity $\langle \delta^a_V(\theta) O \rangle = \langle O \delta^a_V(\theta) S \rangle$ Variation of the action, Noether current:

$$\begin{split} \delta^{a}_{\mathrm{V}}(\theta)S &= -ia^{4}\sum_{x}\theta(x)\partial^{*}_{\mu}\widetilde{V}^{a}_{\mu}(x) \\ \widetilde{V}^{a}_{\mu}(x) &= \overline{\psi}(x)(\gamma_{\mu}-1)\frac{\tau^{a}}{4}U(x,\mu)\psi(x+a\hat{\mu}) \\ &+\overline{\psi}(x+a\hat{\mu})(\gamma_{\mu}+1)\frac{\tau^{a}}{4}U(x,\mu)^{\dagger}\psi(x) \end{split}$$

Choose region R and θ :

$$R = \{x: t_1 < x_0 \le t_2\}, \qquad \theta(x) = \begin{cases} 1 & \text{if } x \in R \\ 0 & \text{otherwise} \end{cases}$$

• • = • • = •

if $O = O_{\text{ext}}$ is localised outside R:

$$\begin{array}{lll} 0 = \langle O_{\mathrm{ext}} i \delta^{a}_{\mathrm{V}}(\theta) S \rangle &=& a^{4} \sum_{x_{0}=t_{1}+a}^{t_{2}} \sum_{\mathbf{x}} \langle O_{\mathrm{ext}} \partial^{*}_{\mu} \widetilde{V}^{a}_{\mu}(\mathbf{x}) \rangle \\ &=& a \sum_{x_{0}=t_{1}+a}^{t_{2}} \partial^{*}_{0} \langle O_{\mathrm{ext}} Q^{a}_{\mathrm{V}}(x_{0}) \rangle \\ &=& \langle O_{\mathrm{ext}} Q^{a}_{\mathrm{V}}(t_{2}) \rangle - \langle O_{\mathrm{ext}} Q^{a}_{\mathrm{V}}(t_{1}) \rangle \end{array}$$

i.e. the vector charge is time-independent; This expresses the exact vector symmetry on the lattice; N.B.: These are exact identities between *lattice* correlation functions! Choosing $O = O_{\text{ext}} \widetilde{V}^{b}_{\mu}(y)$, with $y \in R$:

$$i\varepsilon^{abc} \left\langle O_{\text{ext}} \widetilde{V}_{k}^{c}(y) \right\rangle = \left\langle O_{\text{ext}} \widetilde{V}_{k}^{b}(y) \left[Q_{\text{V}}^{a}(t_{2}) - Q_{\text{V}}^{a}(t_{1}) \right] \right\rangle$$
$$i\varepsilon^{abc} \left\langle O_{\text{ext}} Q_{\text{V}}^{c}(y_{0}) \right\rangle = \left\langle O_{\text{ext}} Q_{\text{V}}^{b}(y_{0}) \left[Q_{\text{V}}^{a}(t_{2}) - Q_{\text{V}}^{a}(t_{1}) \right] \right\rangle$$

- N.B. The RHS does not vanish since the time ordering matters: t₁ < y₀ and t₂ > y₀
- Constitutes Euclidean version of charge algebra!

回り くほり くほう

Exact lattice Ward identities (5)

- implies that the Noether current V_{μ}^{a} is protected against renormalisation; if we admit a renormalisation constant $Z_{\tilde{V}}$ it follows that $Z_{\tilde{V}}^{2} = Z_{\tilde{V}}$ hence $Z_{\tilde{V}} = 1$; its anomalous dimension vanishes!
- Any other definition of a lattice current, e.g. the local current

$$V^{\mathsf{a}}_{\mu}(x) = \overline{\psi}(x) \gamma_{\mu} \gamma_5 \psi(x), \qquad (V_{\mathrm{R}})^{\mathsf{a}}_{\mu} = Z_{\mathrm{V}} V^{\mathsf{a}}_{\mu}$$

can be renormalised by comparing with the conserved current. Its anomalous dimension must vanish, i.e.

$$Z_{\mathrm{V}}=Z_{\mathrm{V}}(g_0) \quad \stackrel{g_0
ightarrow 0}{\sim} \quad 1+\sum_{n=1}^{\infty}Z_{\mathrm{V}}^{(n)}g_0^{2n}.$$

• • = • • = •

- For chiral symmetry there is no conserved current with Wilson quarks.
- However: expect that chiral symmetry can be restored in the continuum limit!
- \Rightarrow [Bochicchio et al '85]: use continuum chiral Ward identities and impose them as normalisation condition at finite lattice spacing *a*!

Continuum chiral WI's as normalisation conditions

• Define chiral variations:

$$\delta_{\mathrm{A}}^{\mathfrak{a}}(\theta)\psi(x) = i\gamma_{5}\frac{1}{2}\tau^{\mathfrak{a}}\theta(x)\psi(x), \qquad \delta_{\mathrm{A}}^{\mathfrak{a}}(\theta)\overline{\psi}(x) = \overline{\psi}(x)i\gamma_{5}\frac{1}{2}\tau^{\mathfrak{a}}\theta(x)$$

• Derive formal continuum Ward identities assuming that the functional integral can be treated like an ordinary integral:

$$\Rightarrow \qquad \langle \delta^{a}_{\mathrm{A}}(\theta) O
angle = \langle O \delta^{a}_{\mathrm{A}}(\theta) S
angle,$$

$$\begin{split} \delta^{a}_{A}(\theta)S &= -i\int d^{4}x\theta(x)\left(\partial_{\mu}A^{a}_{\mu}(x) - 2mP^{a}(x)\right)\\ A^{a}_{\mu}(x) &= \overline{\psi}(x)\gamma_{\mu}\gamma_{5}\frac{1}{2}\tau^{a}\psi(x), \qquad P^{a}(x) = \overline{\psi}(x)\gamma_{5}\frac{1}{2}\tau^{a}\psi(x) \end{split}$$

• Shrink the region *R* to a point *x*:

$$\langle O_{\mathrm{ext}} \delta^{a}_{\mathrm{A}}(\theta) S \rangle = 0$$

 $\Rightarrow \langle \partial_{\mu} A^{a}_{\mu}(x) O_{\mathrm{ext}} \rangle = 2m \langle P^{a}(x) O_{\mathrm{ext}} \rangle$

• The PCAC relation implies that chiral symmetry is restored in the chiral limit.

• • = • • = •

Э

Simplest chiral WI: the PCAC relation (2)

• Impose PCAC on Wilson quarks at fixed *a*: define a bare PCAC mass:

$$m = rac{\left\langle \partial_{\mu} A^{a}_{\mu}(x) O_{\mathrm{ext}} \right\rangle}{\left\langle P^{a}(x) O_{\mathrm{ext}} \right
angle}$$

• A renormalised quark mass can thus be written in two ways

$$m_{\rm R} = Z_{\rm A} Z_{\rm P}^{-1} m = Z_m (m_0 - m_{\rm cr}) \quad \Rightarrow \quad m = Z_m Z_{\rm P} Z_{\rm A}^{-1} (m_0 - m_{\rm cr})$$

- ⇒ The critical mass can be determined by measuring the bare PCAC mass *m* as a function of m_0 and extra/interpolation to m = 0.
 - Note: *m* is only defined up to O(*a*); any change in O_{ext} will lead to O(*a*) differences.

(日本)

PCAC quark mass from SF correlation functions:

$$m = \frac{\partial_0 f_{\rm A}(x_0)}{2 f_{\rm P}(x_0)}$$

 $8^3 \times 16$ lattice, quenched QCD, $a = 0.1 \,\mathrm{fm}$

More chiral WI's: axial current normalisation

• At *m* = 0 we can derive the Euclidean current algebra (in finite volume!):

$$i \varepsilon^{abc} \left\langle O_{\text{ext}} Q_{\text{V}}^{c}(y_{0}) \right\rangle = \left\langle O_{\text{ext}} Q_{\text{A}}^{b}(y_{0}) \left[Q_{\text{A}}^{a}(t_{2}) - Q_{\text{A}}^{a}(t_{1}) \right] \right\rangle$$

• Imposing this continuum identity on the lattice (at m = 0) fixes the normalisation of the axial current

$$(A_{\rm R})^{a}_{\mu} = Z_{\rm A}(g_{0})A^{a}_{\mu}, \qquad Z_{\rm A}(g_{0}) \overset{g_{0} \to 0}{\sim} \quad 1 + \sum_{n=1}^{\infty} Z^{(n)}_{\rm A}g^{2n}_{0}.$$

- Note: When changing the external fields O_{ext} , the result for Z_{A} will change by terms of O(a).
- The PCAC relation and the charge algebra become operator identities in Minkowski space. Changing O_{ext} corresponds to looking at different matrix elements of these operator identities. On the lattice these must be equal up to O(a) terms.

Axial current normalisation with Wilson quarks

Similar results for $N_{
m f}=2,3$ by ALPHA collab.