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2 M. Lüscher: “Advanced lattice QCD”, Les Houches Summer
School lectures 1997 hep-lat/9802029

3 S. Sint “Nonperturbative renormalization in lattice field
theory” Nucl. Phys. (Proc. Suppl.) 94 (2001) 79-94,
hep-lat/0011081

“Lattice QCD with a chiral twist” Lectures at Nara,
November 2005 hep-lat/0611020



Contents

1 RI/MOM schemes cont’d, a few examples

2 The problem of large scale differences and how to solve it

⇒ motivates the Schrödinger functional

3 Schrödinger functional (continuum formulation), some
properties



RI/MOM Schemes (RI = Regularisation Independent;
MOM = Momentum Subtraction)

[Martinelli et al ’95 ]: mimick the procedure in perturbation theory:

choose Landau gauge
∂µAµ = 0

can be implemented on the lattice by a minimisation
procedure

RI/MOM schemes are very popular: many major
collaborations use it because

it is straightforward to implement on the lattice; many
improvements over the years regarding algorithmic questions
it can be used on the very same gauge configurations which
are produced for hadronic physics

Regularisation Independence (RI) means: correlation functions
of a renormalised operator do not depend on the
regularisation used (up to cutoff effects).



RI/MOM schemes, discussion

Suppose we have calculated a renormalised hadronic matrix
element of the multiplicatively renormalisable operator O

MO(µ) = lim
a→0
〈h|OR(µ)|h′〉

Provided µ is in the perturbative regime, one may evaluate
the MOM scheme in continuum perturbation theory and
evolve to a different scale:

MO(µ′) = U(µ′, µ)MO(µ),

U(µ′, µ) = exp

{∫ ḡ(µ′)

ḡ(µ)

γO(g)

β(g)
dg

}

N.B. Continuum perturbation theory is available to 3-loops in
some cases!



RI/MOM schemes, what could go wrong?

The scale µ could be too low; need to hope for a “window”

ΛQCD � µ� a−1

In practice scales are often too low: non-perturbative effects
(e.g. pion poles, condensates) are then eliminated by fitting
to expected functional form (from OPE in fixed gauge);

⇒ errors are difficult to quantify!

Gribov copies: the (Landau) gauge condition does not have a
unique solution on the full gauge orbit

Perturbative calculations are made using

infinite volume
vanishing quark masses

⇒ difficult for numerical simulations especially in full QCD.



A prominent non-perturbative effect: the pion pole

[Martinelli et al. ’95 ]

Consider the 3-point correlation function for Pa:∫
d4x

∫
d4y e−ipx〈ψ(0)γ5

1
2τ

bψ(x)Pa(y)〉

For large p2 it is dominated by short distance contributions
either at x ≈ 0 or x ≈ y . The contribution for x ≈ 0 is
proportional to the pion propagator∫

d4y〈Pb(0)Pa(y)〉 ∝ 1

m2
π

Dimensional counting: suppression by 1/p2 relative to the
perturbative term at x ≈ y :

ZMOM,non−pert
P ∼ A

µ2mq
+ . . .

⇒ the chiral limit is ill-defined!



RI/MOM scheme, example 1

[QCDSF-UKQCD collaboration, Göckeler et al. ’06 ]
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P for the RGI operator after subtraction of the pion pole

through a fit. While there is no plateau at fixed β, the
situation seems to improve towards higher β, as µ gets larger
in physical units.



RI/MOM scheme, example 2

[ETMC collaboration, talk by P. Dimopoulos at Lattice ’07 ]
twisted mass QCD with Nf = 2, subtraction of pion pole à la
[Giusti, Vladikas ’00 ]

While ZS shows the expected plateau, ZP shows some slope even
after subtraction of the pion pole (cutoff effects?)



RI/MOM scheme, example 2

[R. Babich et al. 06 ] four-quark operator for BK with overlap
quarks (quenched QCD at β = 6.0):
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non-perturbative effects are eliminated through fit function
from OPE including logarithmic terms



RI/MOM scheme, example 3

[Huey-Wen Lin ’06 ] study of quark gluon vertex:
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Comparison of the quark vertex function in Landau gauge,
fixed in two different ways on the same ensemble of gauge
configurations

Influence of Gribov copies can be sizable!



RI/MOM schemes; Summary

There are examples where the method seems to work fine

Non-perturbative effects like the pion pole are either
subtracted or taken into account by fits to the expected
p2-behaviour; but error estimates seem difficult!

A warning from the quark-gluon vertex: the effect of Gribov
copies should be monitored!

finite volume and quark mass effects often small.

Since the method can be applied at relatively little cost on the
existing configurations (unless charm quark is dynamical!) it
can always be tried!

However, it seems difficult to get reliable errors down to the
desired level (say below 1 percent for Z -factors)



Improvement of RI/MOM schemes

Many improvements have been introduced over the last 10–15
years (cf. lattice 2009 review by Y. Aoki): A selection:

use of non-exceptional momentum configurations (P. Boyle,
Lattice 2007):
reduces the problem with Goldstone poles;
Continuum perturbation theory needs to be re-done!
reach higher scales? Small steps may be possible [Arthur &
Boyle ’10 ]; in principle need to promote to finite volume
scheme: fix µL:

need gauge fixing on the torus (complicated)
twisted gauge field boundary conditions? link Nc with Nf

in any case perturbation theory needs to be re-done from
scratch and may be complicated

use gauge invariant correlation functions ⇒ no trouble with
Gribov copies; but more demanding in perturbation theory;
expect larger cutoff effects on dimensional grounds.

Perturbative subtraction of cutoff effects

...



The problem of large scale differences

Λ and Mi refer to the high energy limit of QCD

The scale µ must reach the perturbative regime: µ� ΛQCD

The lattice cutoff must still be larger: µ� a−1

The volume must be large enough to contain pions:
L� 1/mπ

Taken together a naive estimate gives

L/a� µL� mπL� 1 ⇒ L/a ' O(103)

⇒ widely different scales cannot be resolved simultaneously on a
finite lattice!



...and its solution

widely different scales cannot be resolved simultaneously on a
single finite lattice

⇒ break-up in smaller steps [Lüscher, Weisz, Wolff ’91; Jansen
et al. ’95]:

1 define renormalized parameters that run with the space-time
volume, i.e. µ = 1/L

2 match to the chosen hadronic input at a hadronic scale
mpLmax = O(1)

3 Non-perturbative renormalization group: recursively connect
scales L = 1/µ and 2L = 1/(µ/2),

L→ 2L→ 4L→ 8L . . .

4 once arrived in the perturbative regime (to be checked)
convert perturbatively e.g. to the MS scheme



Requirements

Wanted: renormalization scheme which

is defined in a finite space-time volume

is non-perturbatively defined;

can be expanded in perturbation theory (up to 2-loop) with
reasonable effort;

is gauge invariant;

is quark mass-independent.

can be evaluated by numerical simulation!

⇒ use the Schrödinger functional!



The Schrödinger functional (formal continuum)

The Schrödinger functional appears naturally in the Schrödinger
representation of QFT (Symanzik ’81), as the time evolution kernel
when integrating the functional Schrödinger equation:
Wave functional in Dirac’s notation (A,A′: field configurations at
(Euclidean) times 0,T ):

ψ[A] ≡ 〈A|ψ〉

ψ′[A′] =

∫
D[A]〈A′|e−TH|A〉〈A|ψ〉

The Schrödinger functional is a functional of the initial and final
field configuration:

Z[A,A′] = 〈A′|e−TH|A〉 =

∫
D[φ]e−S .

The Euclidean field φ satisfies Dirichlet boundary conditions

φ(x)|x0=0 = A(x) φ(x)|x0=T = A′(x)



The Schrödinger functional is an example of a field theory defined
on a manifold with boundary ⇒ problems/questions:

Translation invariance is broken ⇒ momentum is not
conserved.

Conventional proofs of perturbative renormalisability rely on
power counting theorems in momentum space: not applicable
here!

Heuristic arguments by Symanzik:

A renormalisable QFT remains renormalisable when considered on
a manifold with boundary. Besides the usual parameter and field
renormalisations one just needs to add a complete set of local
boundary counterterms to the action, i.e. polynomials in the fields
and its derivatives of dimension 3 or less, integrated over the
boundary.
In the case of scalar φ4

4-theory and boundary at x0 = 0 one finds:∫
x0=0

d3xφ2,

∫
x0=0

d3xφ∂0φ



The Schrödinger functional in QCD (formal continuum)

The definition for gauge theories and QCD is analogous: The
Schrödinger functional is the functional integral on a hyper
cylinder,

Z =

∫
fields

e−S

with periodic boundary conditions in spatial directions and
Dirichlet conditions in time.

Boundary conditions for gluon and quark
fields:

P± = 1
2 (1± γ0),

P+ψ(x)|x0=0 = ρ P−ψ(x)|x0=T = ρ′

ψ(x)P−|x0=0 = ρ̄ ψ(x)P+|x0=T = ρ̄ ′,

Ak(x)|x0=0 = Ck Ak(x)|x0=T = C ′k



Correlation functions are then defined as usual

〈O〉 =

{
Z−1

∫
fields

O e−S
}
ρ=ρ′=0; ρ̄=ρ̄′=0

O may contain quark boundary
fields

ζ(x) ≡ P−ζ(x) =
δ

δρ̄(x)

ζ(x) ≡ ζ(x)P+ =− δ

δρ(x)

ζ ′(x) ≡ P+ζ
′(x) =

δ

δρ̄ ′(x)

ζ ′(x) ≡ ζ ′(x)P+ =− δ

δρ ′(x)

⇒ the boundary values of the quark fields are used as external
sources



Properties of the QCD Schrödinger functional

The SF is renormalisable: besides the renormalisation of the
coupling and quark masses, the boundary quark fields require
a multiplicative renormalisation.

absence of fermionic zero modes: numerical simulations at
zero quark masses are possible!

For some choices of Ck and C ′k it can be shown that the
induced background gauge field is an absolute minimum of
the action ⇒ perturbation theory is straightforward and seems
practical at least to 2-loop order.

As Ck and C ′k are held fixed only spatially constant gauge
transformations are possible at the boundaries!:

Ck(x)→ Λ(x)Ck(x)Λ−1(x) + Λ(x)∂kΛ−1(x)

i.e. the allowed Λ(x) ∈ SU(N) must be x-independent and
commute with Ck .



Therefore, bilinear boundary quark sources such as

Oa =

∫
d3yd3z ζ(y)γ5

τ a

2 ζ(z), O′a =

∫
d3yd3z ζ ′(y)γ5

τ a

2 ζ
′(z)

are gauge invariant!

Typical gauge invariant correlation functions are then

fP(x0) = −1
3

3∑
a=1

〈Pa(x)Oa〉, fA(x0) = −1
3

3∑
a=1

〈Aa
0(x)Oa〉,



⇒ convenient in perturbation theory: in contrast to a periodic or
infinite volume where gauge invariant fermionic correlation
functions lead to one-loop diagrams at lowest order, e.g.

gPP(x0) = −a3
∑
x

3∑
a=1

〈Pa(x)Pa(0)〉

dimensional analysis ⇒ at short distances one finds the
asymptotic behaviour (up to logarithms):

gPP(x0) ∼ const

(x0)3
, fP(x0) ∼ const

expect

small cutoff effects for fP(x0) due to mild x0-dependence
good signal in numerical simulations.



More on the renormalisability of the SF

no gauge invariant dimension ≤ 3 counterterm exists, the pure
gauge SF is finite after renormalisation of the coupling
constant

continuum quark action with SF boundary conditions at
tree-level:

Sf =

∫
d4x ψ

(
1
2D/
↔

+ m
)
ψ − 1

2

∫
x0=0

d3xψψ − 1
2

∫
x0=T

d3xψψ

Exercise:

Show that the boundary terms are necessary if one requires the
existence of smooth solutions to the equations of motion with SF
boundary conditions

The counterterms are linear in the boundary fields

ψ(x)ψ(x)|x0=0 = ρ̄(x)P−ψ(0, x) + ψ(0, x)P+ρ(x),

ψ(x)ψ(x)|x0=T = ρ̄ ′(x)P+ψ(T , x) + ψ(T , x)P−ρ
′(x),



More on the renormalisability of the SF

The only dimension 3 counterterm with correct symmetries is
ψψ

Time reversal symmetry requires the same coefficient at
x0 = 0,T

This counterterm can thus be absorbed in a multiplicative
rescaling of ρ, ρ ′, ρ̄, ρ̄ ′ by the same renormalization constant:

ρR = Zρρ, ρ̄R = Zρρ̄, ρ ′R = Zρρ
′, ρ̄ ′R = Zρρ̄

′

Consequently, setting Zζ = Z−1
ρ :

ζR = Zζζ, ζ ′R = Zζζ
′, ζR = Zζζ, ζ ′R = Zζζ

′,

Hence sources like Oa are multiplicatively renormalised by Z 2
ζ



Definition of the SF coupling [Lüscher et al. ’92 ]

Choose abelian and spatially constant boundary gauge fields:

Ck =
i

L

φ1 0 0
0 φ2 0
0 0 φ3

 , C ′k =
i

L

φ′1 0 0
0 φ′2 0
0 0 φ′3

 , k = 1, 2, 3,

with angles taken to be linear functions of a parameter η:

φ1 = η − π
3 , φ′1 = −φ1 − 4π

3 ,

φ2 = −1
2η, φ′2 = −φ3 + 2π

3 ,

φ3 = −1
2η + π

3 , φ′3 = −φ2 + 2π
3 .

The gauge action has an absolute minimum for:

B0 = 0, Bk =
[
x0C

′
k + (L− x0)Ck

]
/L, k = 1, 2, 3.

i.e. other gauge fields with the same action must be gauge
equivalent to Bµ



Definition of the SF coupling

Define the effective action of the induced background field

Γ[B] = − lnZ[C ,C ′]

In perturbation theory the effective action has the expansion

Γ[B] ∼ g−2
0 Γ0[B] + Γ1[B] + O(g2

0 )

Definition of the SF coupling:

ḡ2(L) =
∂ηΓ0[B]|η=0

∂ηΓ[B]|η=0

∣∣∣∣
mq,i=0

⇒ ḡ2(L) = g2
0 + O(g4

0 )

b.c.’s induce a constant colour electric field:

G0k = ∂0Bk =
Ck − C ′k

L

⇒ The coupling is defined as “response coefficient” to a
variation of a constant colour electric field.


