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Reminder: Symanzik’s effective theory

Expansion of renormalized lattice correlation functions in
powers of a;

reveals structure of O(a) effects; powers of a explicit!

Wilson quarks: both even and odd powers of a appear;

if remnant chiral symmetry: expect only even powers of a

bosonic theories: only even powers of a;

logarithmic dependence of a hidden in coefficients; in PT
obtain a polynomial in ln a with degree l given by loop order;

P(a) ∼ P(0) +
∞∑
n=1

l∑
k=1

cnka
n(ln a)k

What is known about the logarithmic dependence beyond
perturbation theory?



The 2d O(n) sigma model: a test laboratory for QCD

S = n
2γ

∑
x ,µ

(∂µs)
2, s = (s1, . . . , sn) s2 = 1

like QCD the model has a mass gap and is asymptotically free

many analytical tools: large n expansion, Bethe ansatz, form
factor bootstrap, etc.

efficient numerical simulations due to cluster algorithms.

⇒ very precise data over a wide range of lattice spacing (a can
be varied by 1-2 orders of magnitude).

Symanzik: expect O(a2) effects, up to logarithms

Large n, at leading [Caracciolo, Pelissetto ’98 ] and
next-to-leading [Knechtli, Leder, Wolff ’05 ]:

P(a) ∼ P(0) +
a2

L2
(c1 + c2 ln(a/L))



A sobering result (1):

Numerical study of renormalised finite volume coupling to high
precision (n = 3) [Hasenfratz, Niedermayer ’00, Hasenbusch et al.
’01, Balog et al. ’09 ]

Cutoff effects seem to be almost linear in a!

Is this just an unfortunate case?



A sobering result (2):

[Balog, Niedermayer & Weisz ’09 ]
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A closer look (1)

[Knechtli, Leder, Wolff ’05 ], plot of cutoff effects vs. a2/L2,
various n:
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Asymptotic behaviour for larger n according to expectation, what
about n = 3?



A closer look (2)

Continuum limit for mass gap m(L) known analytically [Balog &
Hegedus ’04 ]! Subtract & study pure cutoff effect [Balog,
Niedermayer, Weisz ’09 ]
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A closer look (3)

Continuum limit for mass gap m(L) known analytically [Balog &
Hegedus ’04 ]!
Subtract & study pure cutoff effect: Σ(2, u0, a/L)− σ(2, u0):
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A closer look (4) & solution of puzzle

[Balog, Niedermayer & Weisz ’09 ]

performed two-loop calculation with both effective Symanzik
theory and lattice theory (various actions)

Matching of both sides and subsequent RG considerations

⇒ Symanzik theory predicts for O(n) model leading O(a2)
behaviour:

δ(a) ∝ a2
(
ln a2

)n/(n−2)

compatible with large n result since limn→∞{n/(n − 2)} = 1

For O(3) model:

δ(a) ∝ a2
(
ln3(a2) + c1 ln2(a2) + c2 ln(a2) + c4

)
+ O(a4)



A closer look (5)

Coefficient of O(a2) term [Balog, Niedermayer & Weisz ’09 ]:
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Not exactly constant! Multiplied with a2 obtain “fake” linear
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Conclusion

Symanzik’s analysis is applicable beyond perturbation theory

In QCD numerical results seem to confirm expectations;

The Symanzik expansion is asymptotic, and powers of a are
accompanied by (powers of) logarithms,

Lesson from σ model: logarithmic corrections to powers in a
not always negligible!

It helps to combine results from different regularisations:
renormalised quantities must agree in the continuum limit
(assuming universality)



Renormalization group functions

If the renormalized coupling and quark mass are defined
non-perturbatively at all scales
⇒ renormalization group functions are defined non-perturbatively,
too:

β-function

β(ḡ) = µ
∂ḡ(µ)

∂µ
, ḡ2(µ) = 4παqq(1/µ)

quark mass anomalous dimension:

τ(ḡ) =
∂ lnm(µ)

∂ lnµ
= − lim

a→0

∂ lnZP(g0, aµ)

∂ ln aµ

∣∣∣∣
ḡ(µ)

Asymptotic expansion for weak couplings:

β(g) ∼ −g3b0 − g5b1 . . . , b0 =
{

11
3 N − 2

3Nf

}
(4π)−2, ...

τ(g) ∼ −g2d0 − g4d1 . . . , d0 = 3(N − N−1)(4π)−2, . . .



The Callan-Symanzik equation

Physical quantities P are independent of µ, and thus satisfy the
CS-equation: {

µ
∂

∂µ
+ β(ḡ)

∂

∂ḡ
+ τ(ḡ)m

∂

∂m

}
P = 0

Λ and Mi are special solutions:

Λ = µ (b0ḡ
2)−b1/2b2

0 exp

{
− 1

2b0ḡ2

}
× exp

{
−
∫ ḡ

0
dx

[
1

β(x)
+

1

b0x3
− b1

b2
0x

]}

Mi = mi (2b0ḡ
2)−d0/2b0 exp

{
−
∫ ḡ

0
dx

[
τ(x)

β(x)
− d0

b0x

]}
N.B. no approximations involved!



Λ and Mi as fundamental parameters of QCD

defined beyond perturbation theory

scale independent

scheme dependence? Consider finite renormalization:

g ′R = gRcg (gR), m′R,i = mR,icm(gR)

with asymptotic behaviour c(g) ∼ 1 + c(1)g2 + . . .
⇒ find the exact relations

M ′i = Mi , Λ′ = Λ exp(c
(1)
g /b0).

⇒ ΛMS can be defined indirectly beyond PT; to obtain Λ in
any other scheme requires the one-loop matching of the
respective coupling constants.



Strategy to compute Λ and Mi

At fixed g0 determine the subtracted bare quark masses
mi (g0) corresponding to the chosen experimental input.

Choose a renormalization scale µ in units of the chosen scale
(e.g. Fπ, r0,...)

Determine αqq(1/µ) and ZP(g0, aµ) at the same g0 in the
chiral limit;

repeat the same for a range of g0-values and take the
continuum limit

lim
a→0

Z−1
P (g0, aµ)mi (g0), lim

a→0
αqq(1/µ)

repeat for a range of µ values and check whether the
perturbative regime has been reached;

if this is the case, use the perturbative β- and τ -function to
extrapolate to µ =∞; extract Λ and Mi (equivalently convert
to MS scheme deep in perturbative region).



Example: running of the coupling (SF scheme, Nf = 2)

[ALPHA, M. Della Morte et al. 2005 ]



The problem of large scale differences

Λ and Mi refer to the high energy limit of QCD

The scale µ must reach the perturbative regime: µ� ΛQCD

The lattice cutoff must still be larger: µ� a−1

The volume must be large enough to contain pions:
L� 1/mπ

Taken together a naive estimate gives

L/a� µL� mπL� 1 ⇒ L/a ' O(103)

⇒ widely different scales cannot be resolved simultaneously on a
finite lattice!



In practice ...

This estimate may be a little too pessimistic:

Lmπ ≈ 3− 4 often sufficient

if cutoff effects are quadratic one only needs a2µ2 � 1.

when working in momentum space one may argue that the
cutoff really is π/a;

in any case, one must satisfy the requirement µ� ΛQCD

Heavy quark thresholds

Λ and Mi implicitly depend on Nf the number of active flavours! If
computed for Nf = 2, 3 one needs to perform a matching across
the charm and bottom thresholds to match the real world at high
energies.



QCD & composite operators (1)

Apart from the fundamental parameters of QCD one is interested
in hadronic matrix elements of composite operators:
Example: K 0 − K̄ 0 mixing amplitude in the Standard Model:

d u,c,t s

s
-

d
-

u,c,t

W W
O

d s

s
-

d
-

A local interaction arises by integrating out W -bosons and t, b, c
quarks, corresponding to a composite 4-quark operator



QCD & composite operators (2)

The mixing amplitude reduces to the hadronic matrix element:

〈K̄ 0|O∆S=2|K 0〉 =
8

3
m2

KF
2
KBK

O∆S=2 =
∑
µ

[s̄γµ(1− γ5)d ][s̄γµ(1− γ5)d ]

O∆S=2 requires a multiplicative renormalization; it is initially
defined in continuum scheme used for the Operator Product
Expansion (OPE)

Other composite operators arise by applying the OPE with
respect to some hard scale, such as the photon momentum in
Deep Inelastic Scattering (DIS)

We thus need to discuss renormalisation of composite
operators (cf. quark mass renormalisation for a first example)



RGI operators (1)

Consider renormalized n-point function of multiplicatively
renormalizable operators Oi :

GR(x1, · · · , xn;mR, gR) =
n∏

i=1

ZOi
(g0, aµ)G (x1, · · · , xn;m0, g0)

Callan-Symanzik equation:{
µ
∂

∂µ
+ β(ḡ)

∂

∂ḡ
+ τ(ḡ)m

∂

∂m
+

n∑
i=1

γOi
(ḡ)

}
GR = 0

where

γOi
(ḡ(µ)) =

∂ lnZO(g0, aµ)

∂ ln(aµ)

∣∣∣∣
ḡ(µ)

Asymptotic behaviour for small couplings:

γO(g) ∼ −g2γ
(0)
O − g4γ

(1)
O + . . .



RGI operators (2)

RGI operators can be defined as solutions to the CS equation:(
β(ḡ)

∂

∂ḡ
+ γO

)
ORGI = 0

where

ORGI = OR(µ)

(
ḡ2(µ)

4π

)−γ(0)
O /2b0

exp

{
−
∫ ḡ

0
dx

[
γO(x)

β(x)
− γ

(0)
O

b0x

]}

Its name derives from the fact that ORGI is renormalisation
scheme independent (analogous to Mi , verify it!)!

Beware: the overall normalisation for ORGI here follows the
standard convention used for BK , which differs from the one
used for M.



Perturbative vs. non-perturbative renormalisation

Distinguish 3 cases:

1 finite renormalisations: e.g. axial current normalisation for
Wilson quarks ZA(g2

0 ) (cf. lecture 4)

⇒ perturbation theory to higher orders in g2
0 might be an option

[Di Renzo et al. ’2006 ff ]

2 multiplicative scale dependent renormalisations, e,g, O∆S=2:

⇒ strong case for non-perturbative renormalisation (see below)

3 Power divergences: mixing with operators with lower
dimensions, additive quark mass renormalisation with Wilson
quarks:

⇒ total failure of perturbation theory (s. below)



Quenched BK with staggered quarks [JLQCD, ’98 ]

2 different discretised operators, perturbative 1-loop
renormalisation
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⇒ Results finite but continuum extrapolation difficult due to
O(α2) terms.



Power divergences and perturbation theory

What problems arise if we just use perturbation theory?
In the case of power divergent subtraction PT is clearly insufficient:

additive mass subtraction with Wilson quarks

mR = Zm(m0 −mcr), mcr =
1

a
f (g2

0 )

Suppose one uses a perturbative expansion of f up to g2n
0 :

∆f (g2
0 ) = O(g2n

0 ), g2n
0 ∼ 1

(ln aΛ)n

Remainder (after perturbative subtraction at finite order),

1

a
∆f (g2

0 ) ∼ {a(ln aΛ)n}−1 →∞

is still divergent!



Momentum Subtraction Schemes (MOM)

Recall procedure in continuum perturbation theory:

example: renormalisation of the pseudoscalar density
Pa(x) = ψ(x)γ5

1
2τ

aψ(x):

Correlation functions in momentum space with external quark
states:〈

ψ̃(p)ψ̃(q)
〉

= (2π)4δ(p + q)S(p) quark propagator〈
ψ̃(p)P̃a(q)ψ̃(p′)

〉
= (2π)4δ(p + q + p′)S(p)Γa

P(p, q)S(p + q) ,

At tree-level:

Γa
P(p, q)|tree = γ5

1
2τ

a,

⇒ 1
4

3∑
b=1

tr
{
γ5τ

bΓa
P(p, q)|tree

}
= 1



Renormalised fields:

ψR = Zψψ, ψR = Zψψ, Pa
R = ZPP

a

⇒ renormalised vertex function:

Γa
P,R(p, q) = ZPZ

−2
ψ Γa

P(p, q)

typical MOM renormalisation condition (quark masses set to
zero):

Γa
P,R(p, 0)|µ2=p2 = γ5

1
2τ

a ⇒ ZPZ
−2
ψ

equivalently using “projector”:

1
4

3∑
b=1

tr
{
γ5τ

b Γa
P,R(p, 0)|µ2=p2

}
= 1

Determine Zψ either from propagator or use MOM scheme for
vertex function of a conserved current

ΓV ,R(p, q) = Z−2
ψ ΓV (p, q)



Summary: MOM schemes in the continuum

Renormalisation condions are imposed on vertex functions in
the gauge fixed theory with external quark, gluon or ghost
lines

The vertex functions are taken in momentum space.

A particular momentum configuration is chosen, such that the
vertex function becomes a function of a single momentum p;
quark masses are set to zero

MOM condition: a renormalised vertex function at subtraction
scale µ2 = p2 equals its tree-level expression

Can also be used to define a renormalised gauge coupling:
take vertex function of either the 3-gluon vertex, the
quark-gluon vertex or the ghost-gluon vertex.

Renormalisation constants depend on the chosen gauge! Need
wave function renormalisation for quark, gluon and ghost
fields.


