## Non-perturbative Renormalization of Lattice QCD

## Part II/V

Stefan Sint<br>Trinity College Dublin \& NIC@DESY-Zeuthen



Saha Institute of Nuclear Physics
Kolkata, 3 December 2013

## Contents

(1) Reminder Symanzik theory
(2) Approach to the continuum limit \& Symanzik's effective theory
(3) The 2d $\mathrm{O}(n)$ model as a test laboratory
(9) Callan-Symanzik equation, $\Lambda$-parameter and RGI quark masses
(3) The problem of large scale differences
(0) QCD and composite operators
(3) Renormalisation Group Invariant operators
(8) Perturbation Theory vs. Non-perturbative Methods
(9) Momentum subtraction schemes
(10) Finite volume schemes

## Reminder: Symanzik's effective theory

- Expansion of renormalized lattice correlation functions in powers of $a$;
- reveals structure of $\mathrm{O}(a)$ effects; powers of a explicit!
- Wilson quarks: both even and odd powers of a appear;
- if remnant chiral symmetry: expect only even powers of a
- bosonic theories: only even powers of a;
- logarithmic dependence of a hidden in coefficients; in PT obtain a polynomial in In a with degree I given by loop order;

$$
P(a) \sim P(0)+\sum_{n=1}^{\infty} \sum_{k=1}^{l} c_{n k} a^{n}(\ln a)^{k}
$$

What is known about the logarithmic dependence beyond perturbation theory?

## The 2d $O(n)$ sigma model: a test laboratory for QCD

$$
S=\frac{n}{2 \gamma} \sum_{x, \mu}\left(\partial_{\mu} \mathbf{s}\right)^{2}, \quad \mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \quad \mathbf{s}^{2}=1
$$

- like QCD the model has a mass gap and is asymptotically free
- many analytical tools: large $n$ expansion, Bethe ansatz, form factor bootstrap, etc.
- efficient numerical simulations due to cluster algorithms.
$\Rightarrow$ very precise data over a wide range of lattice spacing (a can be varied by 1-2 orders of magnitude).
- Symanzik: expect $O\left(a^{2}\right)$ effects, up to logarithms
- Large $n$, at leading [Caracciolo, Pelissetto '98] and next-to-leading [Knechtli, Leder, Wolff '05]:

$$
P(a) \sim P(0)+\frac{a^{2}}{L^{2}}\left(c_{1}+c_{2} \ln (a / L)\right)
$$

## A sobering result (1):

Numerical study of renormalised finite volume coupling to high precision ( $n=3$ ) [Hasenfratz, Niedermayer '00, Hasenbusch et al. '01, Balog et al. '09 ]


- Cutoff effects seem to be almost linear in a!
- Is this just an unfortunate case?


## A sobering result (2):

[Balog, Niedermayer \& Weisz '09 ]


Fits with $a$ and $a \ln a$ terms, lattice sizes $L / a=10, \ldots, 64$

## A closer look (1)

[Knechtli, Leder, Wolff '05], plot of cutoff effects vs. $a^{2} / L^{2}$, various $n$ :


Asymptotic behaviour for larger $n$ according to expectation, what about $n=3$ ?

## A closer look (2)

Continuum limit for mass gap $m(L)$ known analytically [Balog \& Hegedus '04 ]! Subtract \& study pure cutoff effect [Balog, Niedermayer, Weisz '09]


## A closer look (3)

Continuum limit for mass gap $m(L)$ known analytically [Balog \& Hegedus '04 ]!
Subtract \& study pure cutoff effect: $\Sigma\left(2, u_{0}, a / L\right)-\sigma\left(2, u_{0}\right)$ :

$c_{1} a+c_{2} a \ln a+c_{3} a^{2}$ (dashed) vs. $c_{1} a^{2}+c_{2} a^{2} \ln a+c_{3} a^{4}$ (solid)

## A closer look (4) \& solution of puzzle

[Balog, Niedermayer \& Weisz '09]

- performed two-loop calculation with both effective Symanzik theory and lattice theory (various actions)
- Matching of both sides and subsequent RG considerations
$\Rightarrow$ Symanzik theory predicts for $\mathrm{O}(n)$ model leading $\mathrm{O}\left(a^{2}\right)$ behaviour:

$$
\delta(a) \propto a^{2}\left(\ln a^{2}\right)^{n /(n-2)}
$$

- compatible with large $n$ result since $\lim _{n \rightarrow \infty}\{n /(n-2)\}=1$
- For O(3) model:

$$
\delta(a) \propto a^{2}\left(\ln ^{3}\left(a^{2}\right)+c_{1} \ln ^{2}\left(a^{2}\right)+c_{2} \ln \left(a^{2}\right)+c_{4}\right)+\mathrm{O}\left(a^{4}\right)
$$

## A closer look (5)

Coefficient of $\mathrm{O}\left(a^{2}\right)$ term [Balog, Niedermayer \& Weisz '09]:


Not exactly constant! Multiplied with $a^{2}$ obtain "fake" linear behaviour in a!

## Conclusion

- Symanzik's analysis is applicable beyond perturbation theory
- In QCD numerical results seem to confirm expectations;
- The Symanzik expansion is asymptotic, and powers of a are accompanied by (powers of) logarithms,
- Lesson from $\sigma$ model: logarithmic corrections to powers in a not always negligible!
- It helps to combine results from different regularisations: renormalised quantities must agree in the continuum limit (assuming universality)


## Renormalization group functions

If the renormalized coupling and quark mass are defined non-perturbatively at all scales
$\Rightarrow$ renormalization group functions are defined non-perturbatively, too:

- $\beta$-function

$$
\beta(\bar{g})=\mu \frac{\partial \bar{g}(\mu)}{\partial \mu}, \quad \bar{g}^{2}(\mu)=4 \pi \alpha_{\mathrm{qq}}(1 / \mu)
$$

- quark mass anomalous dimension:

$$
\tau(\bar{g})=\frac{\partial \ln \bar{m}(\mu)}{\partial \ln \mu}=-\left.\lim _{a \rightarrow 0} \frac{\partial \ln Z_{\mathrm{P}}\left(g_{0}, a \mu\right)}{\partial \ln a \mu}\right|_{\bar{g}(\mu)}
$$

Asymptotic expansion for weak couplings:

$$
\begin{array}{lll}
\beta(g) \sim-g^{3} b_{0}-g^{5} b_{1} \ldots, & b_{0}=\left\{\frac{11}{3} N-\frac{2}{3} N_{\mathrm{f}}\right\}(4 \pi)^{-2}, \ldots \\
\tau(g) \sim-g^{2} d_{0}-g^{4} d_{1} \ldots, & d_{0}=3\left(N-N^{-1}\right)(4 \pi)^{-2}, \ldots
\end{array}
$$

## The Callan-Symanzik equation

Physical quantities $P$ are independent of $\mu$, and thus satisfy the CS-equation:

$$
\left\{\mu \frac{\partial}{\partial \mu}+\beta(\bar{g}) \frac{\partial}{\partial \bar{g}}+\tau(\bar{g}) \bar{m} \frac{\partial}{\partial \bar{m}}\right\} P=0
$$

$\Lambda$ and $M_{i}$ are special solutions:

$$
\begin{aligned}
\Lambda= & \mu\left(b_{0} \bar{g}^{2}\right)^{-b_{1} / 2 b_{0}^{2}} \exp \left\{-\frac{1}{2 b_{0} \bar{g}^{2}}\right\} \\
& \times \exp \left\{-\int_{0}^{\bar{g}} \mathrm{~d} x\left[\frac{1}{\beta(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\} \\
M_{i}= & \bar{m}_{i}\left(2 b_{0} \bar{g}^{2}\right)^{-d_{0} / 2 b_{0}} \exp \left\{-\int_{0}^{\bar{g}} \mathrm{~d} x\left[\frac{\tau(x)}{\beta(x)}-\frac{d_{0}}{b_{0} x}\right]\right\}
\end{aligned}
$$

N.B. no approximations involved!

## $\Lambda$ and $M_{i}$ as fundamental parameters of QCD

- defined beyond perturbation theory
- scale independent
- scheme dependence? Consider finite renormalization:

$$
g_{\mathrm{R}}^{\prime}=g_{\mathrm{R}} c_{g}\left(g_{\mathrm{R}}\right), \quad m_{\mathrm{R}, i}^{\prime}=m_{\mathrm{R}, i} c_{m}\left(g_{\mathrm{R}}\right)
$$

with asymptotic behaviour $c(g) \sim 1+c^{(1)} g^{2}+\ldots$
$\Rightarrow$ find the exact relations

$$
M_{i}^{\prime}=M_{i}, \quad \Lambda^{\prime}=\Lambda \exp \left(c_{g}^{(1)} / b_{0}\right)
$$

$\Rightarrow \Lambda_{\overline{\mathrm{MS}}}$ can be defined indirectly beyond PT; to obtain $\Lambda$ in any other scheme requires the one-loop matching of the respective coupling constants.

## Strategy to compute $\Lambda$ and $M_{i}$

- At fixed $g_{0}$ determine the subtracted bare quark masses $m_{i}\left(g_{0}\right)$ corresponding to the chosen experimental input.
- Choose a renormalization scale $\mu$ in units of the chosen scale (e.g. $F_{\pi}, r_{0}, \ldots$ )
- Determine $\alpha_{\mathrm{qq}}(1 / \mu)$ and $Z_{\mathrm{P}}\left(g_{0}, a \mu\right)$ at the same $g_{0}$ in the chiral limit;
- repeat the same for a range of $g_{0}$-values and take the continuum limit

$$
\lim _{a \rightarrow 0} Z_{\mathrm{P}}^{-1}\left(g_{0}, a \mu\right) m_{i}\left(g_{0}\right), \quad \lim _{a \rightarrow 0} \alpha_{\mathrm{qq}}(1 / \mu)
$$

- repeat for a range of $\mu$ values and check whether the perturbative regime has been reached;
- if this is the case, use the perturbative $\beta$ - and $\tau$-function to extrapolate to $\mu=\infty$; extract $\Lambda$ and $M_{i}$ (equivalently convert to $\overline{\mathrm{MS}}$ scheme deep in perturbative region).


## Example: running of the coupling (SF scheme, $N_{f}=2$ )

[ALPHA, M. Della Morte et al. 2005 ]


## The problem of large scale differences

$\Lambda$ and $M_{i}$ refer to the high energy limit of QCD

- The scale $\mu$ must reach the perturbative regime: $\mu \gg \Lambda_{\mathrm{QCD}}$
- The lattice cutoff must still be larger: $\mu \ll a^{-1}$
- The volume must be large enough to contain pions:
$L \gg 1 / m_{\pi}$
- Taken together a naive estimate gives

$$
L / a \gg \mu L \gg m_{\pi} L \gg 1 \Rightarrow L / a \simeq \mathrm{O}\left(10^{3}\right)
$$

$\Rightarrow$ widely different scales cannot be resolved simultaneously on a finite lattice!

## In practice ...

This estimate may be a little too pessimistic:

- $L m_{\pi} \approx 3-4$ often sufficient
- if cutoff effects are quadratic one only needs $a^{2} \mu^{2} \ll 1$.
- when working in momentum space one may argue that the cutoff really is $\pi / a$;
- in any case, one must satisfy the requirement $\mu \gg \Lambda_{\mathrm{QCD}}$

Heavy quark thresholds
$\Lambda$ and $M_{i}$ implicitly depend on $N_{\mathrm{f}}$ the number of active flavours! If computed for $N_{\mathrm{f}}=2,3$ one needs to perform a matching across the charm and bottom thresholds to match the real world at high energies.

## QCD \& composite operators (1)

Apart from the fundamental parameters of QCD one is interested in hadronic matrix elements of composite operators:
Example: $K^{0}-\bar{K}^{0}$ mixing amplitude in the Standard Model:


A local interaction arises by integrating out $W$-bosons and $t, b, c$ quarks, corresponding to a composite 4-quark operator

## QCD \& composite operators (2)

- The mixing amplitude reduces to the hadronic matrix element:

$$
\begin{aligned}
\left\langle\bar{K}^{0}\right| O^{\Delta S=2}\left|K^{0}\right\rangle & =\frac{8}{3} m_{K}^{2} F_{K}^{2} B_{K} \\
O^{\Delta S=2} & =\sum_{\mu}\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]
\end{aligned}
$$

$O^{\Delta S=2}$ requires a multiplicative renormalization; it is initially defined in continuum scheme used for the Operator Product Expansion (OPE)

- Other composite operators arise by applying the OPE with respect to some hard scale, such as the photon momentum in Deep Inelastic Scattering (DIS)
- We thus need to discuss renormalisation of composite operators (cf. quark mass renormalisation for a first example)


## RGI operators (1)

- Consider renormalized $n$-point function of multiplicatively renormalizable operators $O_{i}$ :

$$
G_{\mathrm{R}}\left(x_{1}, \cdots, x_{n} ; m_{\mathrm{R}}, g_{\mathrm{R}}\right)=\prod_{i=1}^{n} Z_{O_{i}}\left(g_{0}, a \mu\right) G\left(x_{1}, \cdots, x_{n} ; m_{0}, g_{0}\right)
$$

- Callan-Symanzik equation:

$$
\left\{\mu \frac{\partial}{\partial \mu}+\beta(\bar{g}) \frac{\partial}{\partial \bar{g}}+\tau(\bar{g}) \bar{m} \frac{\partial}{\partial \bar{m}}+\sum_{i=1}^{n} \gamma_{O_{i}}(\bar{g})\right\} G_{R}=0
$$

where

$$
\gamma_{O_{i}}(\bar{g}(\mu))=\left.\frac{\partial \ln Z_{O}\left(g_{0}, a \mu\right)}{\partial \ln (a \mu)}\right|_{\bar{g}(\mu)}
$$

- Asymptotic behaviour for small couplings:

$$
\gamma_{O}(g) \sim-g^{2} \gamma_{O}^{(0)}-g^{4} \gamma_{O}^{(1)}+\ldots
$$

## RGI operators (2)

RGI operators can be defined as solutions to the CS equation:

$$
\left(\beta(\bar{g}) \frac{\partial}{\partial \bar{g}}+\gamma_{O}\right) O_{\mathrm{RGI}}=0
$$

where
$O_{\mathrm{RGI}}=O_{\mathrm{R}}(\mu)\left(\frac{\bar{g}^{2}(\mu)}{4 \pi}\right)^{-\gamma_{O}^{(0)} / 2 b_{0}} \exp \left\{-\int_{0}^{\bar{g}} \mathrm{~d} x\left[\frac{\gamma_{O}(x)}{\beta(x)}-\frac{\gamma_{O}^{(0)}}{b_{0} x}\right]\right\}$

- Its name derives from the fact that $O_{\text {RGI }}$ is renormalisation scheme independent (analogous to $M_{i}$, verify it!)!
- Beware: the overall normalisation for $O_{\text {RGI }}$ here follows the standard convention used for $B_{K}$, which differs from the one used for $M$.


## Perturbative vs. non-perturbative renormalisation

Distinguish 3 cases:
(1) finite renormalisations: e.g. axial current normalisation for Wilson quarks $Z_{A}\left(g_{0}^{2}\right)$ (cf. lecture 4)
$\Rightarrow$ perturbation theory to higher orders in $g_{0}^{2}$ might be an option [Di Renzo et al. '2006 ff ]
(2) multiplicative scale dependent renormalisations, e,g, $O^{\Delta S=2}$ :
$\Rightarrow$ strong case for non-perturbative renormalisation (see below)
(3) Power divergences: mixing with operators with lower dimensions, additive quark mass renormalisation with Wilson quarks:
$\Rightarrow$ total failure of perturbation theory (s. below)

## Quenched $B_{K}$ with staggered quarks [

2 different discretised operators, perturbative 1-loop renormalisation

$\Rightarrow$ Results finite but continuum extrapolation difficult due to

## Power divergences and perturbation theory

What problems arise if we just use perturbation theory?
In the case of power divergent subtraction PT is clearly insufficient:
additive mass subtraction with Wilson quarks

$$
m_{\mathrm{R}}=Z_{m}\left(m_{0}-m_{\mathrm{cr}}\right), \quad m_{\mathrm{cr}}=\frac{1}{a} f\left(g_{0}^{2}\right)
$$

Suppose one uses a perturbative expansion of $f$ up to $g_{0}^{2 n}$ :

$$
\Delta f\left(g_{0}^{2}\right)=\mathrm{O}\left(g_{0}^{2 n}\right), \quad g_{0}^{2 n} \sim \frac{1}{(\ln a \Lambda)^{n}}
$$

Remainder (after perturbative subtraction at finite order),

$$
\frac{1}{a} \Delta f\left(g_{0}^{2}\right) \quad \sim \quad\left\{a(\ln a \Lambda)^{n}\right\}^{-1} \rightarrow \infty
$$

is still divergent!

## Momentum Subtraction Schemes (MOM)

Recall procedure in continuum perturbation theory:

- example: renormalisation of the pseudoscalar density $P^{a}(x)=\bar{\psi}(x) \gamma_{5} \frac{1}{2} \tau^{a} \psi(x):$
- Correlation functions in momentum space with external quark states:

$$
\begin{aligned}
\langle\tilde{\psi}(p) \tilde{\bar{\psi}}(q)\rangle & =(2 \pi)^{4} \delta(p+q) S(p) \quad \text { quark propagator } \\
\left\langle\widetilde{\psi}(p) \tilde{P}^{a}(q) \widetilde{\bar{\psi}}\left(p^{\prime}\right)\right\rangle & =(2 \pi)^{4} \delta\left(p+q+p^{\prime}\right) S(p) \Gamma_{P}^{a}(p, q) S(p+q)
\end{aligned}
$$

- At tree-level:

$$
\begin{aligned}
\left.\Gamma_{P}^{a}(p, q)\right|_{\text {tree }} & =\gamma_{5} \frac{1}{2} \tau^{a}, \\
\Rightarrow \quad \frac{1}{4} \sum_{b=1}^{3} \operatorname{tr}\left\{\left.\gamma_{5} \tau^{b} \Gamma_{P}^{a}(p, q)\right|_{\text {tree }}\right\} & =1
\end{aligned}
$$

- Renormalised fields:

$$
\psi_{\mathrm{R}}=Z_{\psi} \psi, \quad \bar{\psi}_{\mathrm{R}}=Z_{\psi} \bar{\psi}, \quad P_{\mathrm{R}}^{a}=Z_{\mathrm{P}} P^{a}
$$

$\Rightarrow$ renormalised vertex function:

$$
\Gamma_{P, \mathrm{R}}^{a}(p, q)=Z_{\mathrm{P}} Z_{\psi}^{-2} \Gamma_{P}^{a}(p, q)
$$

- typical MOM renormalisation condition (quark masses set to zero):

$$
\left.\Gamma_{P, R}^{a}(p, 0)\right|_{\mu^{2}=p^{2}}=\gamma_{5} \frac{1}{2} \tau^{a} \quad \Rightarrow \quad Z_{\mathrm{P}} Z_{\psi}^{-2}
$$

- equivalently using "projector":

$$
\frac{1}{4} \sum_{b=1}^{3} \operatorname{tr}\left\{\left.\gamma_{5} \tau^{b} \Gamma_{P, \mathrm{R}}^{a}(p, 0)\right|_{\mu^{2}=p^{2}}\right\}=1
$$

- Determine $Z_{\psi}$ either from propagator or use MOM scheme for vertex function of a conserved current

$$
\Gamma_{V, \mathrm{R}}(p, q)=Z_{\psi}^{-2} \Gamma_{V}(p, q)
$$

## Summary: MOM schemes in the continuum

- Renormalisation condions are imposed on vertex functions in the gauge fixed theory with external quark, gluon or ghost lines
- The vertex functions are taken in momentum space.
- A particular momentum configuration is chosen, such that the vertex function becomes a function of a single momentum $p$; quark masses are set to zero
- MOM condition: a renormalised vertex function at subtraction scale $\mu^{2}=p^{2}$ equals its tree-level expression
- Can also be used to define a renormalised gauge coupling: take vertex function of either the 3-gluon vertex, the quark-gluon vertex or the ghost-gluon vertex.
- Renormalisation constants depend on the chosen gauge! Need wave function renormalisation for quark, gluon and ghost fields.

