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QCD and the Standard Model of particle physics

The Standard Model (SM):

@ describes strong, weak and electromagnetic interactions;
gauge theory SU(3)xSU(2)xU(1)

@ large scale differences, for instance:
me, my, mz, my = 0(100 GeV) mp, me = O(1GeV)

with light quark masses still much lighter.

= SM for energies < myy reduces to QCD + QED + tower of
effective weak interaction vertices (4-quark-operators, 6-quark
operators ...).

= the structure of this effective “weak hamiltonian” is obtained
perturbatively e.g in MS scheme.

= QCD + effective 4-quark operators a priori defined in
perturbative framework at high energies.



Non-perturbative definition of QCD (1)

To define QCD as a QFT beyond perturbation theory it is not
enough to write down its classical Lagrangian:

Lacn(x) = ; e }+Zw, (D + my) ()

One needs to define the functional integral:

@ Introduce a Euclidean space-time lattice and discretise the
continuum action such that the doubling problem is solved

@ Consider a finite space-time volume = the functional integral
becomes a finite dimensional ordinary or Grassmann integral,
i.e. mathematically well defined!

@ Take the infinite volume limit L — oo

@ Take the continuum limit a — 0



Non-perturbative definition of QCD (2)

@ The infinite volume limit is reached with exponential
corrections = usually not a major problem.
o Continuum limit: existence only established order by order in
perturbation theory; only for selected lattice regularisations:
o lattice QCD with Wilson quarks [Reisz '89 ]
o lattice QCD with overlap/Neuberger quarks [Reisz, Rothe '99 ]

e not (yet ?) for lattice QCD with staggered quarks [cf. Giedt
'06 ]

@ From asymptotic freedom expect
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Non-perturbative definition of QCD (3)

Working hypothesis: the perturbative picture is essentially correct:

@ The continuum limit of lattice QCD exists and is obtained by
taking go — 0

@ Hence, QCD is asymptotically free, naive dimensional analysis
applies: Non-perturbative renormalisation of QCD is based on
the very same counterterm structure as in perturbation theory!

@ Absence of analytical methods: try to take the continuum
limit numerically, i.e. by numerical simulations of lattice QCD
at decreasing values of gp.

WARNING:

Perturbation Theory might be misleading (cp. triviality of
¢3-theory)



Renormalisation of QCD

@ The basic parameters of QCD are gop and m;, = u,d,....

@ To renormalise QCD one must impose a corresponding
number of renormalisation conditions

o If we only consider gauge invariant observables

= no need to renormalize quark, gluon, ghost field and gauge
parameter.

@ All physical information (particle masses and energies, particle
interactions) is contained in the (Euclidean) correlation
functions of gauge invariant composite, local fields ¢;(x)

(010x1) - nlxn))

@ a priori each ¢; requires renormalisation, and thus further
renormalisation conditions.



What would we like to achieve?

Natural question to ask:

What are the values of the fundamental parameters of QCD (and
thus of the Standard Model!),

Qs, My = My, Mg, ...

if we renormalise QCD in a hadronic renormalization scheme,
i.e. by choosing the same number of experimentally well-measured
hadron properties: Fr, m;, mg,.... 7

@ QCD is regarded as a low energy approximation to the
Standard Model; e.m. effects/isospin breaking effects are
small (ae.m. = 1/137) and must be subtracted from
experimental results.

@ conceptually clean, natural question for lattice QCD

@ alternative: combination of perturbation theory +
assumptions (" quark hadron duality”, sum rules,
hadronisation Monte-Carlo, ...).



Renormalization of QCD in hadronic scheme

Sketch of the procedure, using e.g. hadronic observables
Fry Mz, mg, mp:
© Choose a value of the bare coupling gg = 6/0; this determines
the lattice spacing (i.e. mass independent scheme); choose
some intial values for the bare quark mass parameters and a
spatial lattice volume (L/a)3 that is large enough to contain
the hadrons (= constraint for choice of gy or 3 in 1.);

@ tune the bare quark mass parameters such that m;/Fy,
mg /Fr, mp/F, take their desired values (e.g. experimental
ones, but not necessarily!)

© The lattice spacing is obtained from a(8) = (aFx)(8)/Fr|exp.

@ Reduce the value of g2 (i.e. increase ) and increase L/a
accordingly.

© Repeat steps 1 — 4 until you run out of resources...



Auxiliary scale parameters ry, tg, Wy

For technical reasons one often introduces an auxiliary scale
parameter:

@ serves as a yardstick for precise tuning or scaling studies;

@ should be easily computable (in any case easier than say F;);
@ should have a mild dependence on the quark masses;
°

Example: Sommer's scale ry obtained from the force F(r)
between static quarks:

r8F(r)) = 1.65 = rp ~ 0.5fm

o Idea: at finite a use rp/a rather than aF;, but also determine
roFz(3); Conversion to physical units from F is then
postponed to the continuum limit.

@ Advantage: constant physics conditions can be satisfied more
precisely.

Future: a very convenient scale ty is based on the gradient flow
[M. Lischer '10 ]; (later also a variant wp by the BMW coll.)



From bare to renormalised parameters

o For g2 (or B) in some interval one obtains:

Fr,mz,m,mp = go,amo (&), amo.s(&o), amo.c(go)

@ These are bare parameters, their continuum limit vanishes!

@ N.B.: due to quark confinement there is no natural definition
of “physical” quark masses or the coupling constant from
particle masses or interactions

@ At high energy scales, ;1 > mp, one may use perturbative
schemes to define renormalised parameters (e.g. dimensional
regularisation and minimal subtraction)

@ How can we relate the bare lattice parameters to the
renormalised ones in, say, the MS scheme?

@ basic idea: introduce an intermediate renormalisation scheme
which can be evaluated both perturbatively and
non-perturbatively.



Why not use perturbation theory directly?

Shortcut: try to relate the bare parameters directly to MS scheme,
e.g. coupling: Allowing for a constant d = O(1),

ayg(d/a) = ag(a) + clag(a) + czag(a) +..., g = i—;

ms(d/a) = m(a) (1—|—Z,(nl)a0(a)+Z,(,72)a(2)(a)—1—...}

Main difficulties:

@ Setting 1 oc a~! means that cutoff effects and renormalisation
effects cannot be disentangled; any change in the scale is at
the same time a change in the cutoff.

@ One needs to assume that the cutoff scale d/a is in the
perturbative region, higher order effects negligible.

@ One furthermore assumes that cutoff effects are negligible

= how reliable are the error estimates?



Non-perturbatively defined renormalized parameters

Example for a renormalised coupling

Consider the force F(r) between static quarks at a distance r, and
define

aqq(r) = r*F(r)|my,=o
@ at short distances:

aq(r) = asgs(i) + culrmag(i) + - .

@ at large distances:

rl'j;O agq(r) =

oo for Np =0
0 forN;>0

@ NB: renormalization condition is imposed in the chiral limit =
aqq(r) and its S-function are quark mass independent.



Example for a renormalised quark mass

Use PCAC relation as starting point:

Ou(Ar);, = 2mr(Pr)?

o A7, P?: isotriplet axial current & density

@ The normalization of the axial current is fixed by current
algebra (i.e. axial Ward identities) and scale independent!

= Quark mass renormalization is inverse to the renormalization
of the axial density:

(Pr)? = ZpP?, mgr = Zp ' my.

= Impose renormalization condition for the axial density rather
than for the quark mass



Renormalization condition for axial density

Define (P (x)P&(y)) = 6**Gpp(x — y), and impose the condition

1
G -
PP(X) u2x2=1, mq ;=0 27T4(X2)3
Gpp(x) is defined at all distances:
Grp(x) <0 - 1+0(g?),  Gpp(x) R - G2+,

2m4(x2)3 T An2x2 T

= Zp is defined at all scales pu:
e at large u (but p < 1/a):

Zp(go,ap) = 1+ ggdoIn(ap) + .. .,

@ at low scales yu:
Zp(go, ap) o i’



Lattice QCD with Wilson quarks

The action S = S5 + S, is given by
S o= &' ) () (Dw+mo)v(x),  Sg= g tr{l-Pu(x)}
X v

Dw = H{(V,+ V) oV}

e Symmetries: U(Ng)y (mass degenerate quarks), P, C, T and
0(4,7Z)
= Renormalized parameters:

g1:2{ = Zggga mgr = Zn (mO - mcr) , aMey = amcr(gO)'

o In general: Z = Z(g2, aj, amo);

@ Quark mass independent renormalisation schemes:
Z=27(g3,ap) B

@ Simple non-singlet composite fields, e.g. P? = 1y57%%)
renormalise multiplicatively, P = Zp(g¢, au, amo) P?



Approach to the continuum limit (1)

Suppose we have renormalised lattice QCD non-perturbatively, how
is the the continuuum limit approached?
Symanzik's effective continuum theory [Symanzik '79 |:

@ purpose: render the a-dependence of lattice correlation
functions explicit. = structural insight into the nature of
cutoff effects

@ at scales far below the cutoff a—1, the lattice theory is
effectively continuum like; the influence of cutoff effects is
expanded in powers of a:

St = So+aSi+a’S+..., 50:5(30813

Ly(x): linear combination of fields

e with canonical dimension 4 + k
e which share all the symmetries with the lattice action



Approach to the continuum limit (2)

A complete set of dimension 5 fields for £; is given by:
EO—,UJJF,UJ/wa ED,LLD,M»&» m$W7 m%lﬁ, mtr{Fuquu}
The same procedure applies to composite fields:
Per(X) = do + ad1 + a¢o . ..
for instance: ¢(x) = P?(x), basis for ¢1:
a1l _a - 1l _a,), 7. 1_a
m¢7527' 1/% ¢DYSQT l/) ¢’Y527_ W

Consider renormalised, connected lattice n-point functions of a
multiplicatively renormalisable field ¢

Gn(x1, - -y Xn) = Z5(p(x1) -+ - d(Xn))con



Approach to the continuum limit (3)

Effective field theory description:
Gn(le . an) = <¢0(Xl) cee ¢0(Xﬂ)>con
a / d*y (60(x0) - G0(x0) £1(¥))eon

+ aZ (Po(x1) - - 103k - - - G0 (Xn))eon + O(3%)

@ (---) is defined w.r.t. continuum theory with Sp

@ the a-dependence is now explicit, up to logarithms, which are
hidden in the coefficients.

@ In perturbation theory one expects at /-loop order:

oo
0) + Z Z coia"(In a)*

n=1 k=1

where e.g. P(a) = G, at fixed arguments.



Approach to the continuum limit (4)

Conclusions from Symanzik's analysis:

@ Asymptotically, cutoff effects are powers in a, modified by
logarithms;

@ In contrast to Wilson quarks, only even powers of a are
expected for

o bosonic theories (e.g. pure gauge theories, scalar field theories)

o fermionic theories which retain a remnant axial symmetry
(overlap, Domain Wall Quarks, staggered quarks, Wilson
quarks with a twisted mass term, etc.)

In QCD simulations a is typically varied by a factor 2

= logarithms vary too slowly to be resolved; linear or quadratic
fits (in a resp. a®) are used in practice.



Example 1: quenched hadron spectrum

Linear continuum extrapolation of the quenched hadron spectrum;
standard Wilson quarks with Wilson's plaquette action:[CP-PACS
coll., Aoki et al. '02 ] a=0.05 — 0.1 fm, experimental input:

mg, My, M,




Example 2: pion mass in N = 2 tmQCD

[ETM coll. Baron et al '09 ]
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Example 3: O(a) improved charm quark mass (quenched)

[ALPHA coll. J. Rolf et al '02 ]

rM [ {
0e | ALPHA collaboration
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Example 3: Step Scaling Function for SF coupling (N = 2)

[ALPHA coll., Della Morte et al. 2005 ]
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