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QCD and the Standard Model of particle physics

The Standard Model (SM):

describes strong, weak and electromagnetic interactions;
gauge theory SU(3)×SU(2)×U(1)

large scale differences, for instance:

mt ,mH ,mZ ,mW = O(100GeV) mb,mc = O(1GeV)

with light quark masses still much lighter.

⇒ SM for energies � mW reduces to QCD + QED + tower of
effective weak interaction vertices (4-quark-operators, 6-quark
operators ...).

⇒ the structure of this effective“weak hamiltonian” is obtained
perturbatively e.g in MS scheme.

⇒ QCD + effective 4-quark operators a priori defined in
perturbative framework at high energies.



Non-perturbative definition of QCD (1)

To define QCD as a QFT beyond perturbation theory it is not
enough to write down its classical Lagrangian:

LQCD(x) =
1

2g2
tr {Fµν(x)Fµν(x)}+

Nf∑
i=1

ψi (x) (D/+ mi )ψi (x)

One needs to define the functional integral:

Introduce a Euclidean space-time lattice and discretise the
continuum action such that the doubling problem is solved

Consider a finite space-time volume ⇒ the functional integral
becomes a finite dimensional ordinary or Grassmann integral,
i.e. mathematically well defined!

Take the infinite volume limit L→∞
Take the continuum limit a→ 0



Non-perturbative definition of QCD (2)

The infinite volume limit is reached with exponential
corrections ⇒ usually not a major problem.

Continuum limit: existence only established order by order in
perturbation theory; only for selected lattice regularisations:

lattice QCD with Wilson quarks [Reisz ’89 ]
lattice QCD with overlap/Neuberger quarks [Reisz, Rothe ’99 ]
not (yet ?) for lattice QCD with staggered quarks [cf. Giedt
’06 ]

From asymptotic freedom expect

g2
0 = g2

0 (a)
a→0∼ −1

2b0 ln a
, b0 = 11N

3 −
2
3Nf



Non-perturbative definition of QCD (3)

Working hypothesis: the perturbative picture is essentially correct:

The continuum limit of lattice QCD exists and is obtained by
taking g0 → 0

Hence, QCD is asymptotically free, naive dimensional analysis
applies: Non-perturbative renormalisation of QCD is based on
the very same counterterm structure as in perturbation theory!

Absence of analytical methods: try to take the continuum
limit numerically, i.e. by numerical simulations of lattice QCD
at decreasing values of g0.

WARNING:

Perturbation Theory might be misleading (cp. triviality of
φ44-theory)



Renormalisation of QCD

The basic parameters of QCD are g0 and mi , i = u, d , . . ..

To renormalise QCD one must impose a corresponding
number of renormalisation conditions

If we only consider gauge invariant observables

⇒ no need to renormalize quark, gluon, ghost field and gauge
parameter.

All physical information (particle masses and energies, particle
interactions) is contained in the (Euclidean) correlation
functions of gauge invariant composite, local fields φi (x)

〈φ1(x1) · · ·φn(xn)〉

a priori each φi requires renormalisation, and thus further
renormalisation conditions.



What would we like to achieve?
Natural question to ask:

What are the values of the fundamental parameters of QCD (and
thus of the Standard Model!),

αs , mu ≈ md , ms , ...

if we renormalise QCD in a hadronic renormalization scheme,
i.e. by choosing the same number of experimentally well-measured
hadron properties: Fπ, mπ,mK , .... ?

QCD is regarded as a low energy approximation to the
Standard Model; e.m. effects/isospin breaking effects are
small (αe.m. = 1/137) and must be subtracted from
experimental results.

conceptually clean, natural question for lattice QCD

alternative: combination of perturbation theory +
assumptions (”quark hadron duality”, sum rules,
hadronisation Monte-Carlo, . . .).



Renormalization of QCD in hadronic scheme

Sketch of the procedure, using e.g. hadronic observables
Fπ, mπ,mK , mD :

1 Choose a value of the bare coupling g2
0 = 6/β; this determines

the lattice spacing (i.e. mass independent scheme); choose
some intial values for the bare quark mass parameters and a
spatial lattice volume (L/a)3 that is large enough to contain
the hadrons (⇒ constraint for choice of g0 or β in 1.);

2 tune the bare quark mass parameters such that mπ/Fπ,
mK/Fπ, mD/Fπ take their desired values (e.g. experimental
ones, but not necessarily!)

3 The lattice spacing is obtained from a(β) = (aFπ)(β)/Fπ|exp.

4 Reduce the value of g2
0 (i.e. increase β) and increase L/a

accordingly.

5 Repeat steps 1 – 4 until you run out of resources...



Auxiliary scale parameters r0, t0, w0

For technical reasons one often introduces an auxiliary scale
parameter:

serves as a yardstick for precise tuning or scaling studies;

should be easily computable (in any case easier than say Fπ);

should have a mild dependence on the quark masses;

Example: Sommer’s scale r0 obtained from the force F (r)
between static quarks:

r20 F (r0) = 1.65 ⇒ r0 ≈ 0.5 fm

Idea: at finite a use r0/a rather than aFπ but also determine
r0Fπ(β); Conversion to physical units from Fπ is then
postponed to the continuum limit.

Advantage: constant physics conditions can be satisfied more
precisely.

Future: a very convenient scale t0 is based on the gradient flow
[M. Lüscher ’10 ]; (later also a variant w0 by the BMW coll.)



From bare to renormalised parameters

For g2
0 (or β) in some interval one obtains:

Fπ,mπ,mK ,mD ⇒ g0, am0,l(g0), am0,s(g0), am0,c(g0)

These are bare parameters, their continuum limit vanishes!

N.B.: due to quark confinement there is no natural definition
of “physical” quark masses or the coupling constant from
particle masses or interactions

At high energy scales, µ� mp, one may use perturbative
schemes to define renormalised parameters (e.g. dimensional
regularisation and minimal subtraction)

How can we relate the bare lattice parameters to the
renormalised ones in, say, the MS scheme?

basic idea: introduce an intermediate renormalisation scheme
which can be evaluated both perturbatively and
non-perturbatively.



Why not use perturbation theory directly?

Shortcut: try to relate the bare parameters directly to MS scheme,
e.g. coupling: Allowing for a constant d = O(1),

αMS(d/a) = α0(a) + c1α
2
0(a) + c2α

3
0(a) + . . . , α0 =

g2
0

4π

mMS(d/a) = m(a)
(

1 + Z
(1)
m α0(a) + Z

(2)
m α2

0(a) + . . .
}

Main difficulties:

Setting µ ∝ a−1 means that cutoff effects and renormalisation
effects cannot be disentangled; any change in the scale is at
the same time a change in the cutoff.

One needs to assume that the cutoff scale d/a is in the
perturbative region, higher order effects negligible.

One furthermore assumes that cutoff effects are negligible

⇒ how reliable are the error estimates?



Non-perturbatively defined renormalized parameters
Example for a renormalised coupling

Consider the force F (r) between static quarks at a distance r , and
define

αqq(r) = r2F (r)|mq,i=0

at short distances:

αqq(r) = αMS(µ) + c1(rµ)α2
MS

(µ) + . . .

at large distances:

lim
r→∞

αqq(r) =

{
∞ for Nf = 0

0 for Nf > 0

NB: renormalization condition is imposed in the chiral limit ⇒
αqq(r) and its β-function are quark mass independent.



Example for a renormalised quark mass

Use PCAC relation as starting point:

∂µ(AR)aµ = 2mR(PR)a

Aa
µ, Pa: isotriplet axial current & density

The normalization of the axial current is fixed by current
algebra (i.e. axial Ward identities) and scale independent!

⇒ Quark mass renormalization is inverse to the renormalization
of the axial density:

(PR)a = ZPPa, mR = Z−1P mq.

⇒ Impose renormalization condition for the axial density rather
than for the quark mass



Renormalization condition for axial density

Define 〈Pa
R(x)Pb

R(y)〉 = δabGPP(x − y), and impose the condition

GPP(x)
∣∣∣
µ2x2=1,mq,i=0

= − 1

2π4(x2)3

GPP(x) is defined at all distances:

GPP(x)
x2→0∼ − 1

2π4(x2)3
+O(g2), GPP(x)

x2→∞∼ − 1

4π2x2
G 2
π+. . .

⇒ ZP is defined at all scales µ:

at large µ (but µ� 1/a):

ZP(g0, aµ) = 1 + g2
0 d0 ln(aµ) + . . . ,

at low scales µ:
ZP(g0, aµ) ∝ µ2



Lattice QCD with Wilson quarks

The action S = Sf + Sg is given by

Sf = a4
∑
x

ψ(x) (DW + m0)ψ(x), Sg = 1
g2
0

∑
µ,ν

tr {1− Pµν(x)}

DW = 1
2

{(
∇µ +∇∗µ

)
γµ − a∇∗µ∇µ

}
Symmetries: U(Nf)V (mass degenerate quarks), P,C ,T and
O(4,ZZ)

⇒ Renormalized parameters:

g2
R = Zgg2

0 , mR = Zm (m0 −mcr) , amcr = amcr(g0).

In general: Z = Z (g2
0 , aµ, am0);

Quark mass independent renormalisation schemes:
Z = Z (g2

0 , aµ)

Simple non-singlet composite fields, e.g. Pa = ψγ5τ
aψ

renormalise multiplicatively, Pa
R = ZP(g2

0 , aµ, am0)Pa



Approach to the continuum limit (1)

Suppose we have renormalised lattice QCD non-perturbatively, how
is the the continuuum limit approached?
Symanzik’s effective continuum theory [Symanzik ’79 ]:

purpose: render the a-dependence of lattice correlation
functions explicit. ⇒ structural insight into the nature of
cutoff effects

at scales far below the cutoff a−1, the lattice theory is
effectively continuum like; the influence of cutoff effects is
expanded in powers of a:

Seff = S0 + aS1 + a2S2 + . . . , S0 = Scont
QCD

Sk =

∫
d4x Lk(x)

Lk(x): linear combination of fields

with canonical dimension 4 + k
which share all the symmetries with the lattice action



Approach to the continuum limit (2)

A complete set of dimension 5 fields for L1 is given by:

ψσµνFµνψ, ψDµDµψ, mψD/ψ, m2ψψ, m tr {FµνFµν}

The same procedure applies to composite fields:

φeff(x) = φ0 + aφ1 + a2φ2 . . .

for instance: φ(x) = Pa(x), basis for φ1:

mψγ5
1
2τ

aψ, ψD/
←
γ5

1
2τ

aψ − ψγ5 12τ
aD/ψ

Consider renormalised, connected lattice n-point functions of a
multiplicatively renormalisable field φ

Gn(x1, . . . , xn) = Zn
φ 〈φ(x1) · · ·φ(xn)〉con



Approach to the continuum limit (3)

Effective field theory description:

Gn(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉con

+ a

∫
d4y 〈φ0(x1) . . . φ0(xn)L1(y)〉con

+ a
n∑

k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉con + O(a2)

〈· · · 〉 is defined w.r.t. continuum theory with S0

the a-dependence is now explicit, up to logarithms, which are
hidden in the coefficients.

In perturbation theory one expects at l-loop order:

P(a) ∼ P(0) +
∞∑
n=1

l∑
k=1

cnkan(ln a)k

where e.g. P(a) = Gn at fixed arguments.



Approach to the continuum limit (4)

Conclusions from Symanzik’s analysis:

Asymptotically, cutoff effects are powers in a, modified by
logarithms;

In contrast to Wilson quarks, only even powers of a are
expected for

bosonic theories (e.g. pure gauge theories, scalar field theories)
fermionic theories which retain a remnant axial symmetry
(overlap, Domain Wall Quarks, staggered quarks, Wilson
quarks with a twisted mass term, etc.)

In QCD simulations a is typically varied by a factor 2

⇒ logarithms vary too slowly to be resolved; linear or quadratic
fits (in a resp. a2) are used in practice.



Example 1: quenched hadron spectrum

Linear continuum extrapolation of the quenched hadron spectrum;
standard Wilson quarks with Wilson’s plaquette action:[CP-PACS
coll., Aoki et al. ’02 ] a = 0.05− 0.1 fm, experimental input:
mK , mπ, mρ
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Example 2: pion mass in Nf = 2 tmQCD

[ETM coll. Baron et al ’09 ]

= 0.045
= 0.090

rχ0µR = 0.130
(rχ0mPS)

2

(a/rχ0 )
2
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Example 3: O(a) improved charm quark mass (quenched)

[ALPHA coll. J. Rolf et al ’02 ]



Example 3: Step Scaling Function for SF coupling (Nf = 2)

[ALPHA coll., Della Morte et al. 2005 ]


