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X-ray specular reflectivity and diffuse scattering 
techniques are presented and illustrated with ex-
perimental results obtained on different kinds of thin 
films and surfaces. After a short introduction on the 
Fresnel reflectivity, the matrix technique is devel-
oped; the kinematical Born approximation is then 
deduced from the dynamical theory. In this ap-
proximation it is shown how the diffuse scattering 
contribution can be analysed. 
 
1. Introduction 
 
X-ray reflectivity has become an invaluable tool to study 
the structure and the organization of materials which are 
grown as thin films at the submicronic and atomic 
scales1–6. In thin film material research, the trend is to 
design solid films of increasing complexity having spe-
cific properties for technical applications. The nature of 
the materials deposited on substrates and the techniques 
of deposition for such applications are extremely vari-
able. The design of semiconductor and metallic het-
erostructures is well mastered by molecular beam 
epitaxy deposition which generally provides extremely 
well-crystallized materials. This technique which is ex-
pensive is used in general for making specific materials 
such as quantum wells and artificial superlattices. Less 
expensive techniques are now developed and beautiful 
examples of supramolecular structures can now be 
achieved by assembling molecules of different kinds at 
the surface of a substrate7. Well-organized structures 
made in such a way can provide electronic analogues, 
electrochromic or nonlinear optical elements. Such mul-
tilayer architectures can be achieved by the LB method 
and by self-assembly of the layers through covalent 
bonds or metal coordination. For industrial applications 
the sputtering technique is also widely used for coating 
metallic films, for making oxide thin films and for creat-
ing heterogeneous materials like cermets (ceramic met-
als). As can be seen there are many ways to create 
complex mesoscopic layered structures which in turn 
will be considered as interesting if their structure ap-
pears to be as perfect as possible. 

The perfection of mesoscopic layered super-structures 
is defined both by the quality of the interfaces and by 
the reproducibility with which one can achieve the 
deposition of the layers (control of thickness, crystallin- 
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ity, voids or various defects which may appear during 
the growth process). In particular, the roughness of the 
interfaces is of crucial importance for many technologi-
cal applications and it is a parameter which must be de-
termined to appreciate the quality of the interfaces. 

In this paper, we shall present the technique of specu-
lar X-ray reflectivity and show through various exam-
ples how it can be used to determine the electron density 
profile (EDP) and the roughness of the interfaces. The 
measurement of diffuse X-ray scattering will be pre-
sented as a good way to analyse the correlation of inter-
facial roughness between successive layers. We will also 
discuss briefly the method of studying the morphology 
of heterogeneous thin films by means of X-ray scatter-
ing. 

2. Basic principles of X-ray reflectivity 

2.1. The index of refraction 
 
X-rays are part of the broad spectrum of electromagnetic 
waves. X-rays can be produced by the acceleration or 
deceleration of electrons either in vacuum (synchro-
trons) or in metallic targets (tubes). The most widely 
used X-rays in materials science have a typical wave-
length, l, of the order of 0.1 nm. This wavelength is 
associated with a very high frequency of the order of 
1019 Hz which is at least four orders of magnitude 
greater than the eigen frequency of an electron bound to 
a nucleus. As a consequence, the interaction of X-rays 
with matter can be well described (in a classical way for 
a first approach) by an index of refraction which charac-
terizes the change of direction of the X-ray beam when 
passing from air to a material. A very simple classical 
model in which an electron of the material is considered 
to be accelerated by the X-ray field shows that the index 
of refraction for X-rays can be written as  

n = 1 – d –ib, 

where d and b account for the scattering and absorption 
of the material, respectively. The sign preceding b de-
pends on the convention of signs used to define the 
propagation of the electric field. The values of d and b 
(which are positive) depend on the electron density, r, 
and linear absoption coefficient, m, of the material 
through the following relations 
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where re = 2.813 × 10–6 nm is the classical radius of the 
electron, Vm is the volume of the unit cell, Zk is the 
number of electrons of atom k in the unit cell, f’ and f" 
are the real and imaginary parts of the absorption for the 
specific energy of the incident radiation l. The sum is 
performed over all the atoms of the unit cell. 

2.2. The critical angle of reflection 

For X-rays, the refractive index of a material is slightly 
less than unity8. Passing from air (n = 1) to the reflect-
ing material (n < 1), it is possible to totally reflect the 
beam if the incident angle q (which is the angle between 
the surface of the sample and the incident beam) is small 
enough. This is known as the total external reflection of 
X-rays. For this to occur, the incident angle must be 
smaller than the critical angle qc defined as 
 

cosqc = n = 1 – d. 
 
Since n is very close to unity, this angle is very small 
and a Taylor approximation in qc yields 
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2.3. Reflected intensity from ideally flat surface 

When an X-ray beam impinges on a flat material, part of 
the incoming intensity is reflected and part of it is 
transmitted through the material. If the surface of the 
reflecting material is flat, the reflected intensity will be 
confined in a direction symmetric from the incident one 
and will be labelled as specular. The specular reflectiv-
ity is conventionally defined as the ratio 
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where I(q) is the reflected intensity at angle q and I0 is 
the intensity of the incident beam. The domain of valid-

ity of X-ray reflectivity is limited to small angles of in-
cidence where it is possible to consider the electron 
density as continuous. In this approximation, the reflec-
tion can be treated as a classical problem of reflection of 
an electromagnetic wave at an interface. The reflected 
amplitude is obtained by writing the continuity of the 
electric field and of the magnetic field at the interface. 
This leads to the classical Fresnel relationship which 
gives the reflection coefficient in amplitude for the (s) 
and (p) polarization. The reflectivity which is the 
modulus square of this coefficient can be formulated in 
the case of X-rays as  
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This expression is independent of the polarization. Since 
the reflectivity is only observed in specular conditions 
(incident angle equal to the exit angle), we obtain after 
introduction of the wave vector transfer rq  = (0, 0, 
qz = 4p sinq/l) 
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Figure 1 shows the reflectivity of a silicon wafer 
calculated using this formula and using a power law 
formula which is valid when qz > 3qc. The deviation 
from unity at low qz is due to the absorption in 
 
 

 
Figure 1.  X-ray reflectivity from a silicon wafer for no surface 
roughness, for a roughness s = 0.5 nm and in the power law regime. 
One can see that the roughness plays a major role at high wave vec-
tor transfers and that the power law regime differs from the Fresnel 
reflectivity at low wave vector transfers. 
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the material which plays a major role close to 
q = qc = 4pqc/l. 

2.4. Importance of surface roughness 

Ideal flat surfaces are fictitious especially when they are 
analysed with X-rays or neutron reflectometry. Such 
techniques are indeed extremely sensitive to any defects 
of flatness. It is easy to realize that rough surfaces will 
be less reflecting than an ideally flat surface. It is thus 
important to describe the effect of roughness on the 
measured reflected intensity. The roughness, s, of the 
surface can be apprehended statistically with the help of 
the moments of the distribution, P(z), and of altitude 
z(x, y) with respect to the mean altitude z  by the 
following relation 
 
s2 = Æ(z(x, y) – z2Ö = ×P(z)(z(x, y) – z)2dz. 

 
It is usual to introduce a height difference correlation 
function g(X, Y) which correlates the two heights z(x, y) 
and z(x’ = x + X, y’ = y + Y) on the surface as 
 

g(X, Y) = Æ(z(x, y) – z(x�, y�))2Ö 

= Æz2(x, y)Ö + Æz2(x�, y�)Ö – 2Æz(x, y)z(x�, y�)Ö, 
 
where the averaging is taken over the area coherently 
illuminated by the beam. We assume the surface to pre-
sent the property of stationarity, i.e. the mean value of 
the square of the altitude does not depend on the posi-
tion, so that 〈z2(x, y)〉 = 〈z2(x’, y’)〉 = s2. As a result 
 

g(X, Y) = 2s2 – 2Æz(x, y)z(x�, y�)Ö = 2s2 – 2C(X, Y), 

 
where C(X, Y) is the height–height correlation function 
defined as 
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As shown in Figure 1, the effect of surface roughness is 
to reduce the specular reflectivity by a kind of Debye–
Waller factor (this will be evidenced later on). When the 
correlation length of the height fluctuations is not very 
large then Rrough(qz) = Rflat(qz)e

–qz,0qz,1s
2
 (where qz,0 and 

qz,1 are the wave vector transfers in air and in the mate-
rial) and for large qz this may be simplified 

as R q R q erough
z
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z

qz( ) ( ) ,= − 0
2 2
s

 (refs 9 and 10). A similar 

effect is produced by a flat graded layer in which the 
electron density is represented by an error function of 
half width s.  

2. 5. X-ray reflection by planar multilayers with  
flat and rough interfaces 

When the wave propagates in a heterogeneous medium 
presenting regions of different electron densities, it is 
not possible to directly use the Fresnel coefficients. The 
calculation is performed by applying the boundary con-
ditions of the electric and magnetic fields at each inter-
face11–13. The fact that multiple reflections are taken into 
account in the calculation leads to the dynamical theory 
of reflection and the result is usually presented as the 
product of matrices. For this, let us consider a plane 
wave polarized in the direction perpendicular to the 
plane of incidence(s) and propagating in the medium j of 
a stratified material and let us choose the axes so that 
the wave is travelling in the xz plane (Figure 2). For the 
electric field in medium j, solution of the Helmoltz’s 
equation, is 
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where kz,j (resp. kx,j) is the z (resp. x) component of the 
wave vector in medium j. It can be shown that 

kz,j = kj sinqj = k ij jq d b2 2 2− − .  The condition of con-

tinuity of the tangential component of the electric and 
magnetic fields and the conservation of kx,j at interface j, 
j + 1 located at z = zj+1 yield 
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Figure 2.  Schematic of a layered material and the conventions used 
in the text concerning the labels of the layers and of the propagation 
directions of the incident and reflected waves. (Note that the first 
air–material interface begins at altitude z1.) 

Substrate 
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These two equations can be combined in a matrix form 
yielding 
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The matrix which transforms the amplitudes of the elec-
tric field from medium j to medium j + 1 will be denoted 
by the refraction matrix Rj, j+1. In addition, in medium j, 
the amplitude of the electric field varies with altitude h 
as follows 
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The transfer matrix which is involved here will be de-
noted by the translation matrix Tj. The amplitude of the 
electric field at the surface (altitude z1 = 0) of the lay-
ered material is obtained by multiplying all the refrac-
tion and translation matrices in each layer starting from 
the substrate (at zsub) as follows 
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The product of all these matrices is a 2 � 2 matrix 
called the transfer matrix M. The coefficient of reflec-
tion in amplitude of the electric field at the surface of 
the material is given by  
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As X-rays penetrate only over a few microns, it is le-
gitimate to assume that no wave comes back from the 
substrate so that Usub

+ (zsub) = 0 and 
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This method known as the matrix technique is general 
and is valid for any kind of electromagnetic wave. The 
above formalism can be extended to slabs presenting 
uncorrelated rough interfaces. For this, one can show 

that the coefficient mj, j+1 for flat interface has to be mul-

tiplied by e q qz j z j j− + +, , /1 1
2 2s  to get coefficients for a rough 

interface. 
We now present some examples of the usefulness of 

the matrix technique starting with a flat homogeneous 
material (1 layer system) for which the transfer matrix is 
R0,1 and 
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One can see by this example that the matrix technique 
gives the same expression as the Fresnel formulae. 

For a single layer on a substrate (2 layers system), the 
transfer matrix is R0,1T1R1,2 and the reflection coeffi-
cient yields 
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Introducing the reflection coefficients rj, j+1 = mj, j+1/pj, j+1 
at the interface j, j + 1, we get 
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It is worth noting that the denominator of this expres-
sion differs from unity by a term which corresponds to 
multiple reflections in the material as evidenced by the 
product of the two reflection coefficients r0,1r1,2. The 
reflected intensity is therefore 
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The existence of cosine terms in the reflectivity clearly 
indicates that the reflectivity does present periodic oscil-
lations in reciprocal space defined as 
 

2kz,1h = qz,1h = 2pp. 
 
The oscillations are the result of constructive interfer-
ence between the reflected waves at interfaces 1 and 2 
and their period gives the thickness of the film. Figure 3 
corresponding to the reflectivity of diblock copolymer 
deposited on silicon is a good illustration of observable 
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interference. The fact that the reflectivity is less than 1 
below the critical angle is related to a surface effect. At 
very shallow angles, it frequently happens that the foot-
print of the beam is larger than the sample surface so 
that only part of the intensity is reflected. A correction 
must then be applied to describe this part of the reflec-
tivity curve14. Figure 4 shows the influence of surface 
and interface roughness on the reflectivity of a gold thin 
film deposited on a silicon substrate. Here s0 and s1 
represent roughness at film surface and film/substrate 
interface, respectively. 

For two layers deposited on a substrate the analytical 
expression of the reflectivity becomes tedious. The case 
 

 

 
Figure 3.  X-ray reflectivity from a homogeneous thin film of PS-
PBMA (polystyrene-polybutyl-methacrylate) deposited on a silicon 
wafer. 
 
 

 
Figure 4.  Influence of surface and interface roughness on the reflec-
tivity of a thin film of gold deposited on a silicon substrate. 

 
Figure 5.  X-ray reflectivity of a Nb thin film deposited by MBE on 
a sapphire substrate. The attenuation of the short period oscillations 
is due to the presence of a thin layer of niobium oxide. 
 

 
of a niobium thin film deposited on a sapphire sub-
strate15 is shown in Figure 5. Due to the oxidation of 
Nb, the oxide slowly grows as a function of time and 
levels off around 1.5 nm after a few hours of exposure 
in air. The reflectivity displays a typical shape with 
rapid oscillations due to the niobium layer, and a beat-
ing due to the presence of two interfaces at nearly the 
same altitude from the silicon surface. 

The reflectivity curve of a multilayer exhibits a typi-
cal shape in which one can find Bragg peaks separated 
by Kiessig fringes15–17. The distance in q space between 
two Bragg peaks is inversely proportional to the period 
of the multilayer and the one between Kiessig fringes 
gives the thickness of the film (one should expect N – 2 
fringes between two Bragg peaks, N being the number of 
repeated bilayers). Figure 6 shows a reflectivity curve of 
a 6-bilayer Cd-stearate LB film deposited on hydropho-
bic Si substrate. The EDP obtained from the fitting of 
the reflectivity curve is shown as an inset in the figure, 
which gives the total film thickness; location of Cd ions, 
their diffusion and separation, and also the packing of 
the film. 

3. Dynamical to kinematical theory 

The dynamical theory rigorously describes the specular 
reflectivity of flat surfaces but it is difficult to use the 
theory in the case of rough surfaces where a non-
negligible part of the intensity is scattered off-specular. 
With some approximations, it is possible to derive the 
kinematical theory which is more flexible to use. The 
necessary approximation is known as the Born approxi-

Nb 417 Å 

PS-PBMA 
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mation. We describe in this section the different ap-
proximations which lead to the Born approximation by 
following the work of Hamley and Pedersen18. The dy-
namical expression for the reflected amplitude from a 
thin film of thickness h, can easily be extended to a 
large number of layers if we neglect multiple reflections. 
When the refraction is also neglected in the phase shift 
then this yields 
 

r r ej j

iq d

j

n z m
m

j

= +
=

=

−

∑
∑ , ,1

1

0

1

 

 
which can be expressed as 
 

r r
q

ee
j j

z

iq d

j

n z m
m

j

=
−+

=

=

−

∑
∑4 1

2
1

0

1

p
r r( )

.  

 
If we choose the origin of altitudes at the surface of the 
substrate (medium 0 at altitude z1 = 0), we can replace 
in the phase factor, the sum over dm by the altitude zj+1 

of the interface j, j + 1 and thus 
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If we consider that the material is made up of an infinite 
number of thin layers, the sum is transformed into an 
integral over z, and r becomes 
 
 

 
Figure 6.  X-ray reflectivity of 6 bilayers of Cd-stearate LB film 
deposited on a silicon substrate. Inset shows the EDP obtained for 
the best fit curve. 

r
r

q

z

z
e ze

z

iq zz=
−∞

+∞

∫4
2
p rd

d
d

( )
.  

 
The introduction of the Fresnel reflectivity of the sub-
strate, RF(qz) = (4prers)

2/qz
4, in the above expression 

shows that in the first Born approximation the reflectiv-
ity can be written as 
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The above expression of R(qz) is not rigorous but can be 
easily handled in analytical calculations and is widely 
used among the polymer community19,20. In addition, if 
we follow the Wiener–Kintchine theorem we have 
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so that the data inversion gives the autocorrelation func-
tion of the first derivative of the electron density. As 
shown in Figure 7, the data inversion immediately pro-
duces the thickness of the layers and has been success-
fully tested in several cases21,22. The width of the peaks 
depends on the roughness of the interfaces and their 
height on the difference in electron densities. 

These approximations are also ideal to introduce an-
other formulation of the reflected intensity. Using the 
relation between the Fourier transform of a function and 
that of its first derivative, one can write 
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This expression is well-known in the Born approxima-
tion of X-ray diffraction or the so-called kinematical 
theory. It is valid for a plane wave and in the case of 
diffraction at an infinite distance from the sample to the 
source or to the detector (Fraunhofer approximation). 
This means that we do not consider here the effect of the 
resolution of the instrument. 

4. Diffuse scattering 

4.1. Scattering cross-section within the Born  
approximation  
 
In the Born approximation23,24 where the multiple reflec-
tions are neglected, the scattering cross-section is
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Figure 7.  X-ray reflectivity of a system of two layers deposited on a 
silicon substrate together with the data inversion which clearly 
shows the presence of peaks in the autocorrelation function corres-
ponding to the thickness of the layers. 
 

 
the Fourier transform of the density–density autocorrela-
tion function and is defined as 
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At small angles, X-rays are only sensitive to the mean 
electron density which is a constant if the material is 
homogeneous. In the above equation, the phase factor 
defines the phase shift between the waves scattered by 
the two points r and r� when one looks at the position q 
in reciprocal space. It is possible to show that when the 
integration along the z direction is performed from 
–� to z(X, Y), the scattering cross-section yields 
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We thus observe that the scattering cross-section de-
pends on the function g(R) defined in section 2.4 and 
becomes 
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This leads to 
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For non-periodic surfaces, the height–height correlation 
function generally steadily decreases and the use of a 
stretched exponential to describe the decrease is fre-
quent. Sinha et al.23 have used for isotropic surfaces the 
following functional form 
 

C R e R h
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The roughness exponent h is the key parameter which 
describes the height fluctuations at the surface: small h 
values produce very rough surfaces while if h is close to 
1 the surface is more regular. The roughness s governs 
the amplitude of the fluctuations and the parameter x is 
the correlation length of the height fluctuations. We can 
also note that the above correlation function is not uni-
versal. For liquids and surfaces close to the roughening 
transitions other functional forms are used25,26.  

4.2. Ideally flat surfaces 

For ideally flat surfaces g(R) is zero everywhere at the 
surface and the scattering cross-section yields 
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The integral is the Fourier transform of a constant so 
that 
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leading to the following well-known reflectivity 
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The reflectivity decreases as a power law with qz and is 
defined by Dirac distributions in the orthogonal direc-
tions. Thus showing that for a flat surface the reflectiv-
ity is strictly specular. 

300 Å 
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4.3. Rough surfaces without cut-off 

We now consider self-affine rough surfaces presenting a 
correlation length large in comparison with the coher-
ence length with the beam at the surface. As previously 
reported g(R) is given by 
 

g R e R h
( ) ( ),( / )= − −2 12 2

s x  

 
and if R/x << 1, 
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This function can be written as 
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The scattering cross-section yields 
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and can be expressed in polar coordinates as 
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with 22
yxr qqq +=  being the in-plane scattering wave-

vector and J0 the zero order Bessel function. The above 
integral has analytical solutions for h = 0.5 and h = 1 
and has to be calculated numerically in other cases. 
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The above expressions clearly show that for surfaces of 
this kind the scattering is purely diffuse. The case 
h = 0.5 is of particular interest since it corresponds to 
self-affine rough surfaces presenting a random walk 
character. Examples of such a surface have been 
recently encountered in Langmuir–Blodgett films of 
Cd-icosenoate and Cd-arachidate27,28. An example of 
diffuse scattering in such systems is presented in 
Figure 8. 

 
Figure 8.  Diffuse scattering of 8-bilayes of Cd-tricosenoate LB film 
deposited on a silicon substrate. 

 

4.4. Rough surfaces with cut-off  

For rough surfaces presenting a cut-off length x, the 
development of g(R) is no more possible and the scatter-
ing cross-section becomes 
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It is possible to separate this expression into the specu-
lar and the diffuse off-specular components by using the 
following method 
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and 
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The specular part is similar to that of a flat surface ex-

cept that it is reduced by the e qz− 2 2
s  roughness factor 

which is somewhat identical to a Debye–Waller factor. 
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The diffuse scattering part may be determined if one 
knows the functional form of the height–height correla-
tion function. If a stretched exponential is chosen, the 
parameters h and x are obtained by fitting the above 
expression to the data. This approach has been used to 
analyse a variety of thin films and multilayers. A nice 
example concerning W/Si multilayers is presented in 
Salditt et al.29. A more precise treatment can be 
made within the distorted wave Born approximation 
(DWBA)23,24. This allows one to take into account 
the Yoneda wings which appear in the transverse 
scans30. The DWBA is extremely useful to explain 

strong effects of multiple scattering visible in thin 
films31,32. An example of how the diffuse scattering 
has been analysed in a Ge layer deposited on a Si(100) 
substrate32 is presented in Figure 9. The DWBA has 
also been used to analyse liquid and polymer thin 
films33. 

So far in this paper, we have not yet considered the 
effect of the instrumental resolution on the reflectivity 
analysis. One must understand that this effect is of par-
ticular importance in the analysis of the diffuse scattering 
(for more details see refs 14 and 24). It is also important 
to realize that for very rough surfaces ‘true specular re-

 
 

 
Figure 9.  Diffuse scattering measured at different wave vector transfers qz in a thin film of Ge deposited on Si (reproduced 
from permission of Schlomka et al.32). The inset shows the specular reflectivity and the lines the positions at which the trans-
verse scans were made. The scans are presented as a function of the incident angle ai. Apart from the presence of the Yoneda 
wings visible at both sides of the scans one can see some oscillations which are related to a dynamical effect. 
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flectivity’ may not exist and that only diffuse scattering 
would be observed. For this reason any analysis of the 
specular reflectivity can only be valid under the condi-
tion that the diffuse scattering has been subtracted from 
the data. 

5. Heterogeneous films 

The total scattered intensity from a film can be calcu-
lated in the kinematical approximation (as mentioned in 
Section 3) as 
 

I(q) = |×r(r)eiq.rdV|2. 
 
For a heterogeneous thin film, where metal clusters are 
randomly distributed in the amorphous matrix, the above 
electron density can be written as34 
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where ∆r = rcluster – rmatrix, Scluster(ri) is related to the 
shape and size of the ith cluster at a position ri and SF(r) 
is related to the limited dimension of the film. We can 
assume that part of the incident beam is reflected by the 
film interfaces and part of it is scattered by metallic 
grains. Then the total scattered intensity can be written 
as the sum of two intensities arising separately from the 
matrix and the clusters (neglecting the matrix–cluster 
cross term) as 
 

I(qz) = Imatrix + Icluster, 
 
 
 

 
Figure 10.  X-ray reflectivity of Pt-Al2O3 cermet thin film deposited 
on float glass. Best fit curve and the extracted parameters are also 
shown. 

where Imatrix is due to the matrix and can be calculated 
considering a film of thickness D having homogeneous 
electron density as 
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while Icluster can be calculated considering the shape, 
size and separation of the clusters. If we consider 
spherical clusters of radius R distributed in the matrix 
according to the cumulative disorder having average 
separation d then34,35 
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where sd is the variance of d. In actual calculation one 
has to consider the variance of R as well, and take into 
account the effect of reduced dimension in the Icluster 
calculation. The typical reflectivity curve of Pt-Al2O3 
cermet film deposited on float glass is shown in Figure 
10. Extracted parameters and the best fit curve are 
shown in the figure. From these parameters and the dif-
fuse scattering results one can predict the morphology of 
the nano-cermet thin films. 

6. Conclusion  

X-ray reflectometry is now widely used for the analysis 
of surfaces and interfaces. Its main advantage is that it 
allows one to determine the surface and interface rough-
ness (when s is typically less than 5 nm), the layer 
thickness (if typically less than 200 nm), EDP and the 
structural arrangement of complex architectures. Since 
measurements are made at small angles of incidence, it 
is not necessary for the analysed materials to be crystal-
lized which is also an advantage of the technique over 
classical diffraction methods. However, it is also impor-
tant to be cautious about this technique. Indeed due to 
phase loss, the uniqueness of the EDP which can be ob-
tained from data analysis is never ensured. Some at-
tempts which are now made to extract the density profile 
by direct inversion methods36–38 represent a formidable 
challenge. The diffuse scattering which corresponds to 
the signal which is not specularly reflected gives addi-
tional information. In particular, one can learn from the 
diffuse scattering how the roughness of the interfaces is 
correlated both within one interface and from one inter-
face to the next. 
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