
A) Supersolidity in Hard-Core-Boson (HCB) systems

Understanding the microscopic mechanism of coexisting long-range orders (such as lattice  
supersolidity) in naturally occurring and artificially designed strongly correlated systems has been 
and will continue to be an area of immense interest. While phenomenological pictures  exist to 
explain lattice-supersolidity, a microscopic theory that elucidates the homogeneous coexistence is 
yet to be  formulated. 
We study lattice systems of HCBs strongly-coupled to optical phonons.  Devising a strong-weak 
duality treatment, we map  strong-coupling problems (in the original frame of reference) to 
weak-coupling problems (in the dual frame of reference) with the small parameter being the inverse
of that in the original frame of reference. Our duality treatment is potentially employable in various 
fields of physics dealing with strong coupling between fermions/HCBs and massive bosonic 
excitations (such as optical phonons, plasmons, etc.). In the dual frame of reference,  effective 
Hamiltonians are derived using perturbation theory. The effective Hamiltonians (for HCBs 
strongly-coupled to optical phonons) belong to the class of extended boson Hubbard models 
 of the type t1-t2-....-tm-V1-V2-....-Vn [involving hoppings t1, t2, t3, etc. and interactions
V1, V2, V3, etc. of  ranges nearest neighbor (NN), next-nearest neighbor (NNN), 
next-to-next-nearest neighbor (NNNN), etc.]. Unlike many lattice models of the extended boson 
Hubbard type, the parameters (i.e., hopping term, strength of HCB-phonon coupling, and phonon 
frequency) in our t1-t2-....-tm-V1-V2-....-Vn model either can  be determined from band-structure 
calculations or can be obtained from experiments. It is important to point out that our derivations 
[see Sanjoy Datta, Arnab Das, and Sudhakar Yarlagadda, Phys. Rev. B, 71 235118 (2005) and later
works] also correct the oversight in the effective Hamiltonian  (obtained from a different approach 
for the one-dimensional Holstein Model) reported in the well-cited work of Jorge E. Hirsch and 
Eduardo Fradkin, Phys. Rev. B 27, 4302 (1983). 
 
 The minimum model for realizing a checkerboard supersolid (cSS) is shown to be the  t2-V1 

model. On the other hand, t1-V1-V2-V3 model is demonstarted to be the minimum model for 
obtaining a rare diagonal striped supersolid (dsSS). The mechanism governing the existence of a 
supersolid phase away from commensurate fillings, on  unfrustrated system (such as  the square 
lattice), is that interstitials or vacancies can move without  a cost in the potential energy; however, 
importantly, particles on the crystal lattice also take part in the superflow.

                                                         
                                                     
                                               

                                                               
                                                                               (a)

                                            (b)                                                               (c)



FIG. 1. Different types of CDWs: (a) checkerboard solid (cS) at half-filling with S(Q) peaking at 
Q =(π,π); (b) diagonal striped solid (dsS) indicated by peak in S(Q) at Q=(2π/3,2π/3); and 
(c) dsS characterized by ordering wavevector Q = (2π/3,4π/3).

A.1) Checkerboard-supersolidity in a two-dimensional Bose-Holstein model
Satyaki Kar and Sudhakar Yarlagadda, Annals of Physics    375  , 322 (2016).

Here we study the cooperation/competition of the superfluid and charge-density-wave (CDW) 
orders in a two-dimensional Bose-Holstein  model where HCBs are coupled locally to optical 
phonons. In the parameter regimes of strong HCB-phonon coupling and nonadiabaticity, we find a
novel mechanism for lattice-supersolidity (namely, sizeable same-sublattice tunneling in presence 
of large nearest-neighbor repulsion) in the system. The ground state phase diagram is obtained
using Quantum Monte Carlo simulation involving stochastic-series-expansion technique. At 
densities not far from half filling and in the parameter regime where the double-hopping terms 
are non-negligible (negligible) compared to the nearest-neighbor hopping, we get 
checkerboard-supersolidity (phase separation) with CDW being characterized by ordering   
wavevector Q = (π,π).

The following effective  t1-t2-t3-V1  Hamiltonian  for the HCB particles on a 2D square lattice is 
obtained:

He = - g2 ω0 Σj nj  - t1 Σj,δ  bj
Ϯ bj+δ -  t2 Σj,δ'  bj

Ϯ bj+δ'   - t3 Σj,δ''  bj
Ϯ bj+δ'' 

             

               - V1/2 Σj,δ nj (1- nj+δ)                                                            (1)

where δ' and δ'' denote next-nearest-neighbor (NNN) and next-to-next-nearest neighbor (NNNN) 
sites respectively; t1 = t exp(-g2), t2 = 2t2 exp(-g2)/(g2ω0), t3 = t2 /2, and V1 ~ t2 /(g2ω0)

                                                 

FIG. 2.  Quantum phase diagrams at various magnetizations mz  (or fillings ρ) and 



HCB-phonon coupling g when  adiabaticity t /ω0 = 1.0. The calculations are for a 16X16 lattice 
and for our BH system [using Eq. (1)] by (a) considering interaction and only nearest-neighbor 
hopping, i.e., t2 = t3=0;  (b) setting t1 = 0, i.e., considering interaction and only NNN and NNNN 
hoppings; and (c) including  interaction and and all the hoppings. Here PS, SS, and SF refer to 
Phase Separation, Supersolid, and Superfluid.
 A.2) An analysis of the   t2 -V   model
Amrita Ghosh and Sudhakar Yarlagadda, Phys. Rev. B    90  , 045140 (2014).

Some time ago, we derived the effective Hamiltonian for the cooperative electron-phonon 
interaction (EPI) quantum systems in one-dimension [R. Pankaj and S. Yarlagadda, PRB  86, 
035453 (2012)]; it has been demonstrated  analytically that introducing cooperative effects in the 
strong EPI limit changes the dominant transport mechanism from one of nearest-neighbor (NN) 
hopping to that of next-nearest-neighbor (NNN) hopping. Additional NN particle repulsion (due to 
incompatibility of distortions produced by cooperative EPI effects) leads to the t1-t2-V1 model as 
the effective model. Recently (after us) T. Mishra, R. V. Pai, and Subroto Mukerjee [PRA 89, 
013615 (2014)] studied the t1-t2-V1 model.

We study a novel model (i.e., the t2-V1 model involving next-nearest-neighbor hopping and 
nearest-neighbor repulsion) in one dimension that generically depicts the dominant transport 
mechanism in cooperative strong electron-phonon interaction systems. Using analytic and 
numerical approaches, hard-core bosons are shown to typically undergo a striking discontinuous 
transition from a superfluid to a supersolid. Topological inequivalence of rings with even and odd 
number of sites is manifested through observable differences (in structure factor peaks) at the 
transition. Connections are also identified between the t2-V1 model and other topologically 
interesting models.

The above work (on the t2-V1 model) has been used/extended by X. Huo, Y.-Y. Cui, D. Wang, and 
J.-P. Lv, Phys. Rev. A  95, 023613 (2017); T. Bilitewski and N. R. Cooper Phys. Rev. A  94, 023630
(2016); R. W. Chhajlany, P. R. Grzybowski, J. Stasinska, M. Lewenstein, and O. Dutta Phys. Rev. 
Lett. 116, 225303 (2016). 

FIG. 3. (a) Plots of rescaled structure factor S*(π) and superfluid fraction ns at various filling 
factors f obtained using modified Lanczos technique. The calculations were  at  f = 1/2, 1/4 with 
system size Ns =16 and at  f = 1/3 with  Ns=12. At a critical repulsion there is a striking 
discontinuous transition; while S*(π) jumps from its minimum to maximum,  there is a significant 



drop in ns.  (b) Plot of  Vc(∞) (critical repulsion for an infinite system) obtained from Green's 
function analysis for half-filled (f = 1/2) and two-HCB systems (f → 0) and from finite size scaling 
at various other fillings f.

 A.3) Study of long-range orders of hard-core bosons coupled to cooperative normal modes in 
two-dimensional lattices.
Amrita Ghosh and Sudhakar Yarlagadda, arXiv:1610.01447

We study the possible manifestations of long-range orders, including lattice-supersolid phases with 
differently broken symmetry,  in a two-dimensional square lattice system of HCBs coupled to 
archetypal cooperative/coherent normal-mode distortions such as those in perovskites. At strong 
HCB-phonon coupling, using a duality transformation, we obtain an effective Hamiltonian 
t1-t2-t3-V1-V2-V3 involving nearest-neighbor, next-nearest-neighbor, and 
next-to-next-nearest-neighbor hoppings and repulsions. Using stochastic series expansion quantum 
Monte Carlo, we construct the phase diagram of the system. As coupling strength is increased, we 
find that  the system undergoes a first-order quantum phase transition from a superfluid to a 
checkerboard solid at half filling and from a superfluid to a diagonal striped solid [with crystalline 
ordering wavevector Q = (2π/3,2π/3) or (2π/3,4π/3)] at one-third filling without showing any 
evidence of supersolidity. On tuning the system away from these commensurate fillings, 
checkerboard supersolid is generated near half filling whereas a rare diagonal striped supersolid
is realized  near one-third filling. Interestingly, there is an asymmetry in the extent of supersolidity 
about one-third filling. We  identify the t1-V1-V2-V3 model as the minimum model for obtaining a 
diagonal striped supersolid on a square lattice. Within our framework, we also provide an 
explanation for the observed checkerboard and diagonal-stripe formations in  La2-x SrxNiO4 at 
x=1/2 and x=1/3.

FIG. 4.  Phase diagram in terms of magnetization (or filling-fraction ρ and HCB-phonon 
coupling for HCBs on  a 18X18 lattice  with adiabaticity  t /ω0 = 1.0. cS represents 
checkerboard solid with cSS being the corresponding supersolid; dsS stands for diagonal striped 
solid with dsSS being the related supersolid. Plots represent averaged results from simulations 
employing three different random number seeds.

A.4) Correlated singlet phase in the one-dimensional Hubbard-Holstein model
Sahinur Reja, Sudhakar Yarlagadda, Peter B. Littlewood, Phys. Rev. B    86  , 045110 (2012).



 A wealth of materials show evidence of strong electron-phonon (e-ph) interactions besides
 the ubiquitous electron-electron (e-e) interactions. For instance, transition metal oxides such
 as cuprates and manganites and molecular solids such as fullerides indicate strong e-ph coupling g.
 The interplay of e-e and e-ph interactions in these correlated systems leads to coexistence of
 or competition between various phases such as superconductivity, CDW, etc. 
We derived an effective Hamiltonian for the one-dimensional Hubbard-Holstein model  (using our 
duality treatment)  and obtained the phase diagram at various fillings.  As e-e interaction is 
increased, the system transits from an antiferromagnetic cluster to a correlated nearest-neighbor 
singlet phase (see figure below).  We have analyzed the correlated nearest-neighbor singlet phase 
predicted by the effective Hamiltonian of the Hubbard-Holstein model by essentially mapping the 
Hamiltonian onto the well-understood one-dimensional t1-V1 model with large repulsion. Because 
the physics is dictated by the t1-V1 model, we find that CDW and superfluidity occur mutually 
exclusively with CDW resulting only at n = 1/3 while superfluidity manifests itself at all other 
fillings. We also show that the BEC occupation number n0 for our model scales similarly to the n0  
of  a HCB-tight-binding model; additionally, we demonstrate numerically (using our new world-line
QMC method and a modified Lanczos algorithm), at n = 1/3, that the n0 for our model is smaller 
than the n0 for a HCB tight binding model. 

FIG. 5. Plots obtained using modified Lanczos in a twelve-site system for t /ω0 = 1.0.
Phase diagram (at various dimensionless e-e interactions U/t and e-ph couplings g) depicts that the 
phase transition lines are close for both densities n = 1/4 and n = 1/6.

B) Using strong-weak duality to analyze systems with strong cooperative 
electron-phonon interaction

The last few decades have witnessed numerous studies to fathom the tapestry of exotic phenomena



(such as long-range orderings) and interesting functionalities (such as colossal magnetoresistance,
 multiferroicity, superconductivity, etc.) in bulk transition metal oxides (such as the manganites,
cuprates, etc.) and their interfaces. To model the emergent ordering and  functionality in these
complex metal oxides (and guide material synthesis), one needs, as building blocks, effective
Hamiltonians for various interactions. Except for the cooperative electron-phonon interaction (EPI),
effective Hamiltonians, that reasonably mimic the physics, have been derived for all other 
interactions. For instance, double exchange model approximates infinite Hund’s coupling, 
Gutzwiller approximation or dynamical mean-field theory model Hubbard on-site Coulombic 
interaction, superexchange describes localized spin interaction at strong on-site repulsion, etc. 
Many oxides such as cuprates, manganites, and bismuthates indicate cooperative strong EPI.

B.1) Study of cooperative breathing-mode in molecular chains
Ravindra Pankaj and Sudhakar Yarlagadda, Phys. Rev. B    86  , 035453 (2012)

FIG. 11.  Ground state fidelity (GSF) F (g,δ) in the CBM model at  adiabaticity t /ω0 = 0.1 and 
δ = 0.05 for  (a) 1/4 filling and  (c) 1/3 filling. Fidelity susceptilbility (FS)  χF(g) for (b) 1/4 filling 
and (d) 1/3 filling correspond to the GSF plots in (a) and (c). (e) Plot of the peak values of FS 
χFmax (N ) versus N, on a logarithmic scale, at 1/4 filling and 1/3 filling and the corresponding 
power-law fits. 



Many oxides that have the formula ABO3 assume a perovskite structure where two adjacent
BO6 octahedra share an oxygen which leads to cooperative octahedral distortions. Understanding
the cooperative electron-phonon phenomena in systems such as the bismuthates, the cuprates, 
and the manganites is still an open question. Using a controlled analytic nonperturbative treatment 
(involving a duality transformation) that accounts for the quantum nature of the phonons, we derive 
a model that generically describes the cooperative breathing-mode (CBM) at strong 
electron-phonon interaction in one-band one-dimensional systems [PRB   86, 035453]. The 
effective model involves a next-nearest-neighbor  hopping (that dominates over the 
nearest-neighbor hopping at strong coupling) and a  nearest-neighbor repulsion that is significantly 
enhanced due to incompatibility of neighboring dilations/compressions. At non-half-filling, upon 
tuning the electron-phonon coupling, the system undergoes a period-doubling  second-order 
quantum phase transition from a Luttinger liquid to a conducting commensurate 
charge-density-wave state: a phenomenon absent in both the Holstein model and the 
$t_1-V_1$ model. Using fidelity to study the nature of the quantum phase transition, we find that 
the fidelity susceptibility shows a superextensive power law divergence as well as a remarkable 
scaling behavior; both together establish a second-order transition (see  figures  above).

B.2) Charge and orbital order due to cooperative Jahn-Teller effect in manganite chains.
Ravindra Pankaj, Sudhakar Yarlagadda, arXiv:1608.06055

We derive an effective Hamiltonian that takes into account the quantum nature of phonons and 
models cooperative Jahn-Teller effect in the adiabatic regime and at strong electron-phonon 
coupling in one dimension. Our approach involves mapping a strong-coupling problem to a
weak-coupling one by using a duality transformation. Subsequently, a sixth-order perturbation 
theory is employed in the polaronic frame of reference where the small parameter is inversely 
(directly) proportional to the coupling (adiabaticity). We study charge and orbital order in 
ferromagnetic manganite chains and address the pronounced electron-hole asymmetry in the 
observed phase diagram. In particular, at strong coupling, we offer an explanation for the observed 
density dependence of the wavevector of charge modulation, i.e., wavevector is proportional
to (independent of) electron density on the electron-doped (hole-doped) side of the phase diagram 
of manganites. We also provide a picture for the charge and orbital order at special fillings 1/2 , 1/3, 
1/4, and 1/5; while focusing on the ordering controversy at fillings 1/3  and 1/4, we find that 
Wigner-crystal arrangement is preferred over bi-stripe order. 

C) Oxide devices as replacement for semiconductor devices

Although semiconductors are the most widely used functional materials for electronic applications 
so far, nevertheless, semiconductor devices have some limitations: i) the characteristic length scales 
are sizeable so that further scaling down the existing system size is quite difficult; and ii) only the 
charge and spin degrees of freedom are utilized. On the other hand, owing to significantly smaller 
extent of the wavefunction, transition metal oxides can meet the miniaturization demands much 
better than semiconductors. Furthermore, oxides offer a vastly richer physics involving diverse spin,
charge, lattice, and orbital correlations. Low-dimensional oxides present new opportunities for 
devices where these diverse correlations can be optimized by engineering many-body interactions, 
fields, geometries, disorder, strain, etc. Therefore, oxides may be viewed as one of the best 
candidates to replace semiconductors in future electronic devices.



C.1.1) Study of decoherence in models for hard-core bosons coupled to optical phonons
A. Dey, M. Q. Lone, and S. Yarlagadda,  Phys. Rev. B    92  , 094302 (2015).

C.1.2) Polaron dynamics and decoherence in an interacting two-spin system coupled to an 
optical-phonon environment
Amit Dey and S. Yarlagadda,  Phys. Rev. B    89  , 064311 (2014).

Understanding coherent dynamics of excitons, spins, or hard-core bosons (HCBs) has tremendous 
scientific and technological implications for quantum computation. Here, we study decay of 
excited-state population and decoherence in a two-site HCB model with site-dependent strong 
potentials and subject to non-Markovian dynamics. The model is investigated in the regimes of 
antiadiabaticity and strong HCB-phonon coupling with each site providing a different local optical 
phonon environment; furthermore, the HCB system is taken to be initially uncorrelated with the 
environment in the polaronic frame of reference. We show clearly that the degree of decoherence 
and decay of excited state are enhanced by the proximity of the site-energy difference to the 
eigenenergy of phonons and are most pronounced when the site-energy difference is at resonance 
with twice the polaronic energy; additionally, the decoherence and the decay effects are reduced 
when the strength of HCB-phonon coupling is increased. 

The model Hamiltonian is given by

    H = ε1(n1 -1/2) + ε2(n2 -1/2) - J⊥ /2 (b†
1 b2 + b†

2 b1) + JⅡ (n1 -1/2) (n2 -1/2)

            + gω Σi=1,2 (ni -1/2)(ai + a†
i) + ω Σi=1,2 (a†

i ai)                              (2)

where ε1  and ε2 are the site energies, J⊥ /2 (>0) is the hopping,  and  JⅡ (>0)
is the repulsion strength between HCBs on the adjacent sites.

FIG. 6.  Time (ωt)  dependence of  C(t) for J⊥ / ω = 0.5, g=2.0, and when (a) Δε/ω = 2.5, 

7.5, and 14.5; (b) Δε/ω = 2.9, 7.9, and 14.9; and (c) Δε/ω = 3.0, 8.0, and 15.0.



In the two-site HCB model, the dynamics of population as well as the coherence are important for 
understanding physical systems such as a double quantum dot (DQD) acting as a qubit for quantum 
computation. An oxide- (i.e., manganite-) based DQD, with appropriate detuning, can serve as a
charge qubit with very small decoherence compared to a semiconductor DQD; furthermore, it can 
also meet the demands of miniaturization as its size can also be much smaller than a semiconductor 
DQD. 

C.2) Temperature dependence of long coherence times of oxide charge qubits.
A. Dey, S. Yarlagadda,  arXiv:1610.01866

  

__________________________________________________

 KBT /ωu |  Δε/ωu         0.0            0.2           0.5          0.8

------------------------------------------------------------------------------------
   0.01                                            >100 s        >100 s       >100 s       >100 s

   0.15                                              50 ps          24 μs       > 0.1 s         83 ns

   0.50                                                1 ps          47 ps       0.75 μs        10 ps

__________________________________________________
TABLE. I. Coherence times at various values of scaled thermal energy KBT /ωu and detuning

energy  Δε/ωu  when optical phonon energy ωu = 0.05 eV.

The ability to maintain coherence and control in a qubit is a major requirement for quantum 
computation. We show theoretically that long coherence times can be achieved above boiling point 
of liquid helium in charge qubits of oxide double quantum dots. Detuning the dots to a fraction of 
the optical phonon energy, increasing the electron-phonon coupling, reducing the adiabaticity,
or decreasing the temperature enhances the coherence time. We consider a system that is initially 
decoupled from the phonon bath in the polaronic frame of reference and solve the non-Markovian 
quantum master equation; we find that the system decoheres after a long time, despite the fact that 
no energy is exchanged with the bath. 

C.3) Giant magnetoelectric effect in pure manganite-manganite heterostructures.
Sanjukta Paul, Ravindra Pankaj, Sudhakar Yarlagadda, Pinaki Majumdar, Peter B. Littlewood, 
arXiv:1702.06302

 Obtaining strong magnetoelectric couplings in  bulk materials and heterostructures is an ongoing 
challenge. We demonstrate that manganite heterostructures of the form

             (Insulator)/(LaMnO3)n/Interface/(CaMnO3)n/(Insulator)
show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by 



charges leaking from  LaMnO3  to   CaMnO3 due to repulsion. Here, an  effective nearest-neighbor 
electron-electron (electron-hole) repulsion (attraction) is generated by cooperative electron-phonon
interaction. Double exchange, when a particle virtually hops to its unoccupied neighboring site and 
back, produces magnetic polarons that polarize  antiferromagnetic regions. Thus a striking giant 
magnetoelectric effect ensues when an external electrical field enhances the electron leakage across 
the interface. 

            

         

FIG. 7.  In a symmetric 12X6 lattice, for  coupling g = 2.2, (a) at zero electric field, layer-averaged 
charge density <n(I)>  and layer-averaged magnetization <m(I)> of t2g spins normalized to unity; 
(b) at  Eext = 0, ground state configuration; (c) at strong external electric field  Eext = 400 V/cm,
layer-averaged charge density <n(I)> and layer-averaged magnetization <m(I)> of  t2g spins 
normalized to unity; and (d) at  Eext = 400  kV/cm, charge configuration in the ground state.

  

D) Correlation between battery material performance and  cooperative electron-
phonon interaction in LiCoyMn2-yO4

K. Ragavendran, P. Mandal, and S. Yarlagadda, Appl. Phys. Lett.    110  , 143901 (2017).

So far designing new battery materials has been based on intuition and chemical concepts. 
However, it is highly essential to couple these efforts with basic physics (experimental and 
theoretical) investigations so that better batteries can be designed. Despite the fact that battery 



materials show striking similarities with the perovskite manganites and sodium cobaltate,
problems in battery materials are hardly addressed by the physics community. The present work  
establishes the much-needed correlation between battery performance and basic physics pertaining 
to battery material (such as LiCoyMn2-yO4). It is believed that the present study will provide a new
insight into designing Li-ion battery cathodes and stimulate further research activity, along similar 
directions, among the physicists. 

The relation between electrochemical performance, activated-transport parameters, thermal 
expansion, and cooperativity of electron-phonon-interaction distortions in LiCoyMn2-yO4  is 
investigated. The first order cooperative-normal-mode transition,   detected through coefficient of 
thermal expansion, is found to disappear at a critical doping (y ~ 0.16);  interestingly, for y ≳0.16 
the resistivity does not change much with doping and the electrochemical capacity becomes 
constant over repeated cycling. The  critical doping y ~ 0.16 results in breakdown of the network of 
cooperative/coherent normal-mode distortions; this leads to vanishing of the first-order transition, 
establishment of hopping channels with lower resistance, and enhancing lithiation and delithiation 
of the battery, thereby minimizing electrochemical capacity fading. 

The resistivity in  LiCoyMn2-yO4  can be expressed as follows 
                         ρ = [A exp(2R/ξ)/n] exp(Ea/KBT)                                         (3)
A is a constant, n is the concentration of the eg electrons, ξ is the localization length, R is the 
shortest hopping distance for an eg electron (i.e., the distance between two neighboring Mn3+

and Mn4+ ions), and T is the temperature. Even upon doping with cobalt (where Co3+ replaces 
Mn3+), each Mn3+ has  the same number of diagonally opposite Mn4+ ions for the eg electron to hop
to; this justifies using a fixed-hopping-distance model rather than a variable-hopping-range model. 

FIG.  8.  Linearity in plots of log10( ρ) vs  1/T depicting activated transportat various dopings 
and above the structural transition. For doping below y ~ 0.16,  the resistivity drops sizeably with 
increase in doping; contrastingly, for  y ≳0.16, the resistivity does not change much with doping.



Our transport model is clearly verified by Fig. 8 which depicts  linear plots of log10( ρ) versus 
1/T. Using Fig. 8, at various Co-doping values, we extract the prefactor  Aexp(2R/ξ)/n  and the 
activation energy Ea [occurring in Eq. (3)] and generate Fig. 9. Now, the cobalt doping has two 
competing effects on the localization length ξ: (i) the frustration (produced by electron-electron 
repulsion) decreases with increase in doping and, thus, tends to increase $\xi$; (ii) contrastingly, the

disorder effect due to doping tends to decrease ξ. However, at a critical doping yc , there is a 
breakdown of the cooperative normal-mode-network and  frustration is no longer significant

to ξ for  dopings beyond yc. Thus,  above y ~ yc , ξ  decreases with increasing doping; on the other

hand, below y ~ yc , ξ increases rapidly with doping. Furthermore, 1/n increases gradually with 
doping. Hence, in the above  expression for resistivity, the prefactor A exp(2R/ξ)/n will have a 
minimum as a function of Co-doping. In fact, as depicted in Fig. 9, the minimum in the prefactor

A exp(2R/ξ)/n occurs at y ~ 0.16 which leads us to estimate yc ~ 0.16. Lastly, it is of interest to
note that the resistivity drops sizeably with increasing doping until the doping-level attains a value  
y ~ 0.16; at higher doping values (i.e., y ≳0.16), the resistivity does not change much (as can be 
seen in Fig. 8). This can be understood in terms of a non-cooperative network being established at 

y = yc ~ 0.16; above yc, in Eq. (3) for resistivity, an increase in the prefactor A exp(2R/ξ)/n  is 

compensated by a reduction in exp(Ea/KBT).

FIG. 9.  Plots of the prefactor A exp(2R/ξ)/n and the activation energy Ea [occurring in the 
resistivity equation (3)] as a function of cobalt doping in  LiCoyMn2-yO4 . The prefactor shows a 
minimum at y ~ 0.16 and the drop in Ea is sharper till y ~ 0.16; both are indicative of a change in 
the transport mechanism.

Finally, we will discuss capacity fading as displayed in Fig. 10. In the undoped case and at lower 
dopings (i.e., y < 0.16), the network of cooperative/coherent normal-mode distortions  restricts  



lithiation (delithiation) of the cathode material; consequently, each time  only a fraction of  the un-
lithiated (lithiated) material gets lithiated (delithiated). On increasing the doping to y ≳0.16,
a network of non-cooperative normal-mode distortions is established which facilitates both the 
lithiation and the delithiation processes. Thus, while there is capacity fading upon repeated cycling
at lower values of doping (i.e., y < 0.16), the capacity remains constant for y ≳0.16. However, 
for y ≳0.16,  at higher doping values the capacity is less due to decrease in the number of eg 
carriers. Thus ideally, it is best to use LiCoyMn2-yO4  at y ~ 0.16 for optimal electrochemical 
performance.

FIG. 10.  Variation of the capacity as a function of cycle number for Li/LiCoyMn2-yO4  cells at 
various cobalt dopings. At higher doping y ~ 0.16, capacity remains unchanged after repeated 
cycling. Reproduced with permission from J. Electrochem. Soc. 145, 807 (1998).

E)  Study of two-spin entanglement in singlet states
M. Q. Lone, A. Dey, and S. Yarlagadda, Solid State Communications    202  , 73 (2015).

Valence-bond (VB) states were shown to be the ground states of spin systems earlier by 
C. K. Majumdar's group  and later by Shastry and Sutherland. Any spin-singlet state (i.e., state with 
total spin eigenvalue ST = 0) can be expressed  as a superposition of VB states. 
Correlation/entanglement between two spins plays an important role in understanding  phase 



transitions, length scale in the system, etc. Although two-spin correlation/entanglement has  been 
investigated in certain  Resonating-valence-bond (RVB) states,  to our knowledge,  there has been 
no explicit construction of RVB states that would  contain maximal entanglement of two-spin 
subsystems. 

The spins of a two-spin singlet, while being maximally entangled with each other, are completely 
unentangled with the remaining spins and thus show monogamy. Thus, if we wish to establish 
greater entanglement between the two-spin subsystem  and the rest of the spin system, we are 
forced to diminish entanglement between the  spins of the two-spin subsystem. The purpose of this 
work is to enhance our understanding of the distribution of two-spin entanglement in singlet states.
We analyze the following two extreme cases in a general singlet: (1) maximal average entanglement
between two spins; and (2) maximal average entanglement between a two-spin subsystem and the 
remaining spins.  The main results of this work are as follows. First, we study  two-spin 
entanglement in singlets.  We show that  the average entanglement between two spins is maximum 
(as expected) for a single VB state. In a singlet, we also demonstrate that SU(2) isotropy and  
homogeneity (in spin-spin correlation function) maximize the bipartite  entanglement E2

v (the 
average  entanglement between a subsystem of two spins and the rest of the system) while 
minimizing the average entanglement between two spins. Second, we adopt two ways of obtaining 
maximal E2

v states: (1) imposing homogeneity on singlet states;  and (2) generating isotropy in a 
general homogeneous state. By using these two approaches, we construct explicitly  four-spin and 
six-spin highly entangled states that are both  isotropic and homogeneous. Our maximal  E2

v  states 
represent a new class of RVB states which we show to be the ground states of the infinite-range
Heisenberg model.


