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Background & Literature

• Stock market crashes : a subject of intimate
study in financial economics literature

• From (Fisher, 1930) to Lauterbauch et al.
(2012 ):
– reasons, nature and impact of stock market

crashes have been analysed in a various ways by
various authors
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• Behavioural
– Galbraith (1954) , Kindleberger (1978)
– (Shiller R. J., 1987)tries to provide a behavioural

finance perspective to stock market crashes
– (Bereave & Veronesi, 2003): focus on micro-

behaviour of traders and information asymmetry
– Li et al.(2009) identify a Bayesian investor’s belief

evolution when facing a structural break in
economy and links it to the bubbles and crashes
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Recent Developments
• Apart from traditional econometric modelling
• Considerable research work towards modelling

financial crashes based on analogies from physics
• Close to a crash the market behaves like a

thermodynamic system which undergoes phase
transition

• crashes as critical points in a system
• log-periodic fluctuations in stock market indices
• earthquake-stock market analogy

– (Feigenbaum & Freund, 1996), (Feigenbaum & Freund,
1998)
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• Standard econometric models it is not
possible to detect the bubble in advance or
predict a crash even in approximate terms
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Motivation

• Recurrence Plot(RP) can detect critical phases in the
system and changes in the same

• Inspired by this (Fabretti & Ausloos, 2005)first show
– that using recurrence plot and its quantification one can

detect endogenous crashes
• (Guhathakurta, Bhattacharya, & Roychowdhury, 2009),

(Guhathakurta, Bhattacharya, & Roychowdhury,
2010a), (Guhathakurta, Bhattacharya, &
Roychowdhury, 2010b) further established the tool
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Present Work
• Extends the original findings of Guhathakurta et

al. (2010b) by analysing eight different financial
crashes at different times

• Purpose
– Identify the critical phases

• understand the dynamics of the stock market
during such periods

• Using the recurrence statistics, we show
– it is possible to detect critical periods in advance for

all the cases where there was a known bubble
building up in the market
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Crashes
• Black Monday (Oct 19, 1987) Crash, Hong Kong

AOI
• The Friday the 13th mini-crash (Oct 13,1989) Dow

Jones Industrial Average (DJIA)
• Japanese bubble (1986-91), NIKKEI
• October 27, 1997 mini-crash, Hang Seng
• 11 Sept NYSE , 2001 crash, DJIA
• Stock market downturn of 2002, DJIA
• China 2007 Crash, CSI300
• 2010 Flash crash, DJIA
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Data & Software

• Our analysis covers eight different stock
market crashes which occurred in different
stock exchanges across the world.

• The data for analysis was the closing value of
the respective stock indices.

• All the analysis was carried out on MATLAB
platform.
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Definition: A recurrence plot (RP) is a graph that
shows all those times at which a state of the
dynamical system recurs. In other words, the RP
reveals all the times when the phase space
trajectory visits roughly the same area in the
phase space.
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• A phase space, introduced by Willard Gibbs
in 1901, is a space in which all possible
states of a system are represented, with
each possible state of the system
corresponding to one unique point in the
phase space.

• In a phase space, every degree of freedom
or parameter of the system is represented
as an axis of a multidimensional space.
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• For every possible state of the system, or
allowed combination of values of the system's
parameters, a point is plotted in the
multidimensional space.

• Often this succession of plotted points is
analogous to the system's state evolving over
time.

• In the end, the phase diagram represents all
that the system can be, and its shape can
easily elucidate qualities of the system that
might not be obvious otherwise.

RECURRENCE PLOTRECURRENCE PLOT

• For every possible state of the system, or
allowed combination of values of the system's
parameters, a point is plotted in the
multidimensional space.

• Often this succession of plotted points is
analogous to the system's state evolving over
time.

• In the end, the phase diagram represents all
that the system can be, and its shape can
easily elucidate qualities of the system that
might not be obvious otherwise.

3/31/2014 KGT 16Econophys  KolkataVIII



• Eckmann et al. (1987) have introduced a tool
which can visualize the recurrence of states xi
in a phase space

• Usually, a phase space does not have a
dimension (two or three) which allows it to be
pictured

• Eckmann's tool enables us to investigate the
m-dimensional phase space trajectory
through a two-dimensional representation of
its recurrences.
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• Such recurrence of a state at time i at a different timej is marked within a two-dimensional squared matrixwith ones and zeros dots (black and white dots in theplot), where both axes are time axes

• This representation is called recurrence plot (RP).Such an RP can be mathematically expressed as

• Ri, j = Θ ( εi − || xi − xj||), xi ∈ ℜm, i, j=1…N,

• where Ri, j is the recurrence plot, N is the number ofconsidered states xi, εi is a threshold distance, || ⋅ ||a norm and Θ( ⋅ ) the Heaviside function

• The Heaviside step function is given by:
• Θ (x) = 0 if x<0
• Θ(x) = 1 if x ≥ 0
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• Structures in Recurrence Plots
• Homogeneous RPs are typical of stationary

and autonomous systems. Ex-a random time
series

• Oscillating systems have RPs with diagonal
oriented, periodic recurrent structures
(diagonal lines, checkerboard structures

• Abrupt changes in the dynamics as well as
extreme events cause  bands in the RP
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RECURRENCE PLOTRECURRENCE PLOT

(A) (B) (C)

(A) homogeneous (uniformly distributed noise),
(B) periodic (super-positioned harmonic oscillations)
(C) disrupted (Brownian motion).
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The average diagonal line length L gives the
average time that two segments of the trajectory
are close to each other, and can be interpreted as
the mean prediction time.
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Analogously to the definition of the determinism in
Eq. (5), the fraction of recurrence points forming
vertical structures in the RP is defined as

and is called laminarity.
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The average length of vertical structures is given by

and is called trapping time.
Both LAM and TT have been proven to be useful for
describing the dynamics of discrete systems and studying
chaos-chaos transitions. RQA as the whole is a very powerful
technique for quantifying differences in the dynamics of
complex systems

RECURRENCE QUANTIFICATION
ANALYSIS
RECURRENCE QUANTIFICATION
ANALYSIS

The average length of vertical structures is given by

and is called trapping time.
Both LAM and TT have been proven to be useful for
describing the dynamics of discrete systems and studying
chaos-chaos transitions. RQA as the whole is a very powerful
technique for quantifying differences in the dynamics of
complex systems

3/31/2014 KGT 24Econophys  KolkataVIII



• One key question in empirical research
concerns the confidence bounds of the
calculated RQA measures

• Schinkel et al. have suggested a method to
estimate the confidence of the RQA
measures [ (Schinkel, Marwan, Dimigen, &
Kurths, 2009)]

• We have used 95% confidence level for the
computation of these measures.
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Discussion
• The Recurrence Plot of any time series reveals the

dynamic patterns of the time evolution of the data set
• The colour bands changed over the entire regime

indicating a transition in dynamic state
• The colour code : a clue about the level of determinism

in the system
• Whenever we see a dark band (Blue and Magenta)

emanating we can understand the dynamic system is
no longer exhibiting pure stochastic behaviour but a
trend is emerging instead

• With respect to stock market data, we can take this as
a bubble setting in.
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Discussion
• Whether the RP can display such dark bands

before the rash dates
• A close inspection: that in all the cases except for

the 9/11 crash and Flash crash ,known exogenous
crashes, we see that a dark band is emerging

• Average length of such bands is lasting about 100
trading days - about four months of active trading

• The bubble always gathered momentum three to
four months before the crash occurred

• Corresponding RQA statistics also reinforces our
findings

• Whether the RP can display such dark bands
before the rash dates

• A close inspection: that in all the cases except for
the 9/11 crash and Flash crash ,known exogenous
crashes, we see that a dark band is emerging

• Average length of such bands is lasting about 100
trading days - about four months of active trading

• The bubble always gathered momentum three to
four months before the crash occurred

• Corresponding RQA statistics also reinforces our
findings

3/31/2014 Econophys  KolkataVIII KGT 35



Discussion

• The presence of dark band : formation of
trend in the time signal

• Phenomenological interpretation of the same
may be emergence of herd behaviour

• Shiller R. (2000)
– speculative bubbles are motivated by

“precipitating factors”
– amplification mechanisms” that take the form of

price-to-price feedback.
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Discussion
• A long recurrence : can happen because of the

feedback effects
• One may also refer to(Bakshi & Madan, 1998)

, (Bakshi & Madan, 1999), (Bakshi, Madan, &
Panayotov, 2010)

• strong relation between higher moments and
crashes

• indicating the trending effect
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Conclusion

• Reinforces the findings of Guhathakurta et al.
(2010)

• Corresponding to the epoch of 100 days
before the crash there was a marked change
in the nonlinear dynamics of the system

• recurrence plot can be confidently used in
identifying bubble

• Crash may be expected if it continues for three
or more months
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Conclusion

• RP alone can not predict cashes
• Raises doubt about the ability of the phase

transition model as proposed by (Sornette D.
A., 1996) to precisely predict the crashes

• But definitely, this tool may be used
– to identify changes in market dynamics
– can serve as a warning bell.

• Future works may evolve around modelling
bubbles as regime changes
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