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Preface

Systemic risk has long been identified as a potential for financial institutions to
trigger a dangerous contagion mechanism from the financial economy to the real
economy itself. One of the commonly adopted definitions of systemic risk is: “risk
of disruption to the flow of financial services that is

(i) caused by an impairment of all or parts of the financial system; and
(ii) has the potential to have serious negative consequences for the real economy”.

Evident from this definition, or from any of its variants that one can find in the grow-
ing literature on the subject, are two characteristic aspects. The first one being that
such a risk takes place at a much larger scale than that of an individual institution.
The second one being that it eventually spreads to the real economy outside the fi-
nancial system through various “leakage” mechanisms, of which the last crisis has
given some examples: liquidity shrinkage, fire sale of assets, drop in market value
of derivatives. . .

This type of risk, long confined to the monetary market, has spread widely in the
recent past, culminating in the subprime crisis of 2008. The understanding and con-
trol of systemic risk has therefore become an extremely important societal and eco-
nomic question. Such problems are now extensively being studied by people from
disciplines like economics, finance and physics. The contributions by physicists are
relatively new.

The Econophys-Kolkata VI conference, the 6th event in this series of interna-
tional conferences, held during October 21–25 last year, was dedicated to address
and discuss extensively these issues and the recent developments. Like the last event
in the series, this one was also organized jointly by the École Centrale Paris and the
Saha Institute of Nuclear Physics, and was held at the Saha Institute of Nuclear
Physics, Kolkata.

This proceedings volume contains the written versions of most of the talks and
seminars delivered by distinguished experts from all over the world, participating in
the meeting, and accepted after refereeing. For some completeness in the cases of
one or two important topics (like in the case Many-agent Games), some reviews, by
experts who could not attend, were invited and incorporated in this volume.

v



vi Preface

These Proceedings volume is organized as follows: Part I dedicated to the study
of systemic risk, network dynamics and other empirical studies. Part II devoted to
model-based studies. We have also included Part III for “miscellaneous reports”,
to present some on-going or preliminary studies. Finally, we have summarized in
a brief “discussion and comments” Appendix, some of the remarks made by the
participants during the various interesting and animated exchanges that took place
during the panel discussion in the conference.

We are grateful to all the participants of the conference for their participation and
contributions. We are also grateful to Mauro Gallegati and the Editorial Board of the
New Economic Windows series of the Springer-Verlag (Italia) for their support in
getting this Proceedings volume published as well, in their esteemed series.1

The editors also address their thanks to the Centre for Applied Mathematics and
Computational Science at Saha Institute, and École Centrale Paris for their support
in organizing this conference. They would also like to thank Gayatri Tilak for pro-
viding invaluable help during the preparation of the manuscript.

Frédéric Abergel
Bikas K. Chakrabarti
Anirban Chakraborti

Asim Ghosh

Châtenay-Malabry, France
Kolkata, India
Châtenay-Malabry, France
Kolkata, India
April, 2012

1Past volumes:
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M. Mitra, New Economic Windows, Springer-Verlag, Milan, 2011.

(ii) Econophysics & Economics of Games, Social Choices and Quantitative Techniques, Eds.
B. Basu, B.K. Chakrabarti, S.R. Chakravarty, K. Gangopadhyay, New Economic Windows,
Springer-Verlag, Milan, 2010.

(iii) Econophysics of Markets and Business Networks, Eds. A. Chatterjee, B.K. Chakrabarti, New
Economic Windows, Springer-Verlag, Milan, 2007.

(iv) Econophysics of Stock and other Markets, Eds. A. Chatterjee, B.K. Chakrabarti, New Eco-
nomic Windows, Springer-Verlag, Milan, 2006.

(v) Econophysics of Wealth Distributions, Eds. A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti,
New Economic Windows, Springer-Verlag, Milan, 2005.
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Chapter 12
Kolkata Paise Restaurant Problem:
An Introduction

Asim Ghosh, Soumyajyoti Biswas, Arnab Chatterjee,
Anindya Sundar Chakrabarti, Tapan Naskar, Manipushpak Mitra,
and Bikas K. Chakrabarti

Abstract We discuss several stochastic optimization strategies in games with many
players having large number of choices (Kolkata Paise Restaurant Problem) and
two choices (minority game problem). It is seen that a stochastic crowd avoiding
strategy gives very efficient utilization in KPR problem. A slightly modified strategy
in the minority game problem gives full utilization but the dynamics stops after
reaching full efficiency, thereby making the utilization helpful for only about half
of the population (those in minority). We further discuss the ways in which the
dynamics may be continued and the utilization becomes effective for all the agents
keeping fluctuation arbitrarily small.
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12.1 Introduction

The Kolkata Paise Restaurant (KPR) problem [1–5] is a repeated game, played be-
tween a large number (N ) of agents having no interaction amongst themselves.
In KPR problem, prospective customers (agents) choose from n restaurants each
evening simultaneously (in parallel); N and n are both large and fixed (typically
n = N ). Each restaurant has the same price for a meal (hence no budget constraint
for the agents). It is assumed that each can serve only one customer any evening
(generalization to a larger value is trivial). The information regarding the customer
distributions for earlier evenings is available to everyone. If more than one customer
arrives at any restaurant on any evening, one of them is randomly chosen (each of
them are anonymously treated) and is served, while the rest do not get dinner that
evening. An alternative visualization can be one in which multiple customers arriv-
ing in a single restaurant have to share the food meant for one customer, keeping all
of them unhappy. The utilization fraction f̄ in the problem is defined as the aver-
age fraction of restaurants which were visited by people any evening in the steady
state. Each agent develops its own (parallel) algorithm to choose the restaurant every
evening such that he/she is alone there. Also, the times required to converge/settle to
such a solution (if exists), should be low (faster than, say, logN ). If the restaurants
have different ranks which are agreed upon by all the agents, additional complica-
tions may arise.

Paisa is the smallest monetary unit in Indian currency, and the use of the word
would essentially be synonymous with anything that is very cheap. In Kolkata, there
used to be very cheap and fixed rate “Paise Restaurant” which were popular among
the daily labourers. During lunch hours, the labourers used to walk (to save the
transport costs) to one of these restaurants and would miss lunch if they got to a
restaurant where there were too many customers. Walking down to the next restau-
rant would mean failing to report back to work on time! There were indeed some
well-known rankings of these restaurants, as some of them would offer tastier items
compared to the others. A more general example of such a problem would be when
the society provides hospitals (and beds) in every locality but the local patients go to
hospitals of better rank (commonly perceived) elsewhere, thereby competing with
the local patients of those hospitals. Unavailability of treatment in time may be con-
sidered as a lack of service for those people and consequently as (social) wastage of
service by those unvisited hospitals.

A dictator’s solution to the KPR problem is the following: everyone is asked
to form a queue and is assigned a restaurant with rank matching the sequence of
the person in the queue on the first evening. Then each person is asked to go to
the next ranked restaurant in the following evening, thus for the person in the last
ranked restaurant this means going to the first ranked restaurant. This shift process
continues for successive evenings, thus providing clearly the most efficient solution
(with utilization fraction f̄ of the services by the restaurants equal to unity) and
the system arriving at this solution trivially and immediately (from the first evening
itself). However, in reality this cannot be the true solution of the KPR problem,
where each agent decides on his own (in parallel and democratically) every evening,
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based on complete information about past events. In this game, the customers try
to evolve a learning strategy to eventually get dinners at the best possible ranked
restaurant, avoiding the crowd. It is seen that these strategies take considerable time
to converge and even after that the eventual utilization fraction f̄ is far below unity.

12.2 Kolkata Paise Restaurant Problem

In this review, we will talk about the KPR problem where N agents are parallelly
visiting n restaurants on every day [n, N → ∞; keeping n/N finite]. Each agent
has been trying to get food from the best rank restaurants every day. But, each day,
one agent can visit one restaurant and every restaurant has the capacity to serve food
for one customer per evening. Therefore, as mentioned before, many agents go to
a particular restaurant then one of the agents will be randomly chosen and will be
served and the rest of the agents will not get dinner for that day, thus satisfying one
of them. An alternative picture is one in which many customers have to share the
food served for one customer, leaving all of them unsatisfied. Generally one can
see that a few of the restaurants are not visited by any of the agents on a particular
evening and that many agents crowd in other restaurants and do not get dinner for the
evening. The utilization fraction f̄ in the problem is therefore given by the average
fraction of restaurants which were visited by customers on any evening in the steady
state.

We discuss the case where instead of deterministic strategies, if everyone follows
stochastic strategies, then one gets not only to higher values of the utilization frac-
tion, but also attains it in very small convergence time (usually of order logN or
smaller).

In general in the KPR problem n = gN and N → ∞ and in its primitive ver-
sion, g = 1 (n = N ), while for general phase transition studies (see Sect. 12.3) one
considers g ≤ 1. For the Minority Game (see Sect. 12.4) n = 2 (with N → ∞ as
usual).

12.2.1 Random-Choice Case (Stochastic)

Suppose there are N agents and n restaurants. Any agent can select any restaurant
with equal probability. Therefore, the probability that a single restaurant is chosen
by m agents is a Poisson distribution in the limit N → ∞, n → ∞:

Δ(m) =
(

N

m

)
pm(1 − p)N−m; p = 1

n

= (N/n)m

m! exp(−N/n) as N → ∞, n → ∞. (12.1)
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Therefore the fraction of restaurants not chosen by any agent is given by Δ(m = 0) =
exp(−(N/n)) and that implies that average fraction of restaurants occupied on any
evening is given by [2]

f̄ = 1 − exp(−N/n) � 0.63 (12.2)

for n = N in the KPR problem.

12.2.2 Rank Dependent Strategies (Stochastic)

Let us now consider that all restaurants have a well defined rank (agreed by every
agent) depending upon quality of food, services, etc. although price of a meal is
same for all restaurants. Thus, all agents will try to get food from best rank restau-
rants. But since a restaurant can serve only one customer, it means that many of
the agents in crowded restaurants will remain unsatisfied. Now, assume that any
kth restaurant have rank k and any agent choses that restaurant with probability
pk(t) = kζ /

∑
kζ (here ζ is any natural number). Here we discuss the results for

such kind of strategy.
If an agent selects any restaurant with uniform probability p then the probability

that a single restaurant is chosen by m agents is given by

Δ(m) =
(

N

m

)
pm(1 − p)N−m. (12.3)

Therefore, the probability that a restaurant with rank k is not chosen by any of the
agents will be given by

Δk(m = 0) =
(

N

0

)
(1 − pk)

N ; pk = kζ∑
kζ

� exp

(−kζ N

Ñ

)
as N → ∞, (12.4)

where Ñ = ∑N
k=1 kζ � ∫ N

0 kζ dk = Nζ+1

(ζ+1)
. Hence

Δk(m = 0) = exp

(
−kζ (ζ + 1)

Nζ

)
. (12.5)

Therefore the average fraction of agents getting dinner in the kth ranked restaurant
is given by

f̄k = 1 − Δk(m = 0) (12.6)

and the numerical estimates of f̄k is shown in Fig. 12.1. Naturally for ζ = 0, the
problem corresponding to random choice f̄k = 1−e−1, giving f̄ = ∑

f̄k/N � 0.63
and for ζ = 1, f̄k = 1 − e−2k/N giving f̄ = ∑

f̄k/N � 0.57.
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Fig. 12.1 The main figure
shows average fraction of
utilization (f̄k) versus rank of
the restaurants (k) for
different ζ values. The inset
shows the distribution
D(f = ∑

f̄k/N) of the
fraction f agent getting
dinner any evening for
different ζ values. The
simulations are done for
N = 104 and n = 104.
From [5]

12.2.3 Strict Crowd-Avoiding Case (Mixed)

We consider the case (see [4, 5]) where each agent chooses on any evening (t) ran-
domly among the restaurants in which nobody had gone in the last evening (t −1). It
was observed [5] that the distribution D(f ) of the fraction f of utilized restaurants
is again Gaussian with a most probable value at f̄ � 0.46. The explanation was
given in the following way: As the fraction f̄ of restaurants visited by the agents
in the last evening is avoided by the agents this evening, the number of available
restaurants is N(1− f̄ ) for this evening and is chosen randomly by all the N agents.
Hence, it fits with (12.1) by considering (N/n) = 1/(1 − f̄ ). Therefore, following
(12.1),

(1 − f̄ )

[
1 − exp

(
− 1

1 − f̄

)]
= f̄ . (12.7)

The solution of this equation gives f̄ � 0.46.

12.2.4 Stochastic Crowd Avoiding Case

Up to this point it is seen that indeed the random choice gives best utilization. Fol-
lowing a rank or strictly avoiding the crowd do not improve this fraction. While fol-
lowing a rank inherently prefers some restaurants and thereby making those crowed,
the strict crowd avoidance on the other hand eliminates the possibility of a high uti-
lization by not allowing repeated (successful) visits to a given restaurant.

However, in this section, we describe the following stochastic strategy: [5] If
an agent goes to restaurant k on an evening (t − 1) then the agent goes to the same
restaurant next evening with probability pk(t) = 1

nk(t−1)
where nk(t −1) is the num-

ber of customers in kth restaurant on t − 1 day’s evening or otherwise choose any
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Fig. 12.2 The figure shows
that distribution of utilization
fraction in different condition
of the KPR problem. All
simulation data are shown for
N = 104 and n = 104

other restaurant k′(�= k) with uniform probability. In this process, the average uti-
lization fraction is f̄ � 0.8 in the steady state and the distribution D(f ) is a Gaus-
sian with peak at f � 0.8 (see Fig. 12.2).

An approximate estimate of f̄ can be made using the following argument: Let
ai denote the fraction of restaurants where exactly i agents (i = 0, . . . ,N) appeared
on any evening and assume that ai = 0 for i ≥ 3. Therefore, a0 + a1 + a2 = 1, a1 +
2a2 = 1 and hence a0 = a2. Given this strategy, a2 fraction of agents will attempt
to leave their respective restaurants in the next evening (t + 1), while no intrinsic
activity will occur at the restaurants where, nobody came (a0) or only one came
(a1) in the previous evening (t). These a2 fraction of agents will now get equally
divided (each in the remaining N − 1 restaurants). Of these a2, the fraction going
to the vacant restaurants (a0 in the earlier evening) is a0a2. Hence the new fraction
of vacant restaurants is now a0 − a0a2. In restaurants having exactly two agents (a2
fraction in the last evening), some vacancy will be created due to this process, and
this is equal to a2

4 − a2
a2
4 . Steady state implies that a0 − a0a2 + a2

4 − a2
a2
4 = a0 and

hence using a0 = a2 we get a0 = a2 = 0.2, giving a1 = 0.6 and f̄ = a1 + a2 = 0.8.
Of course, the above calculation is approximate as none of the restaurant is assumed
to get more than two customers on any evening (ai = 0 for i ≥ 3). The advantage in
assuming only a0, a1 and a2 to be non vanishing on any evening is that the activity of
redistribution on the next evening starts from this a2 fraction of the restaurants. This
of course affects a0 and a1 for the next evening and for steady state these changes
must balance. The computer simulation results also conform that ai ≤ 0.03 for i ≥ 3
and hence the above approximation does not lead to a serious error.

12.2.5 A General Study for Crowd Avoiding Case

The stochastic crowd avoiding case can be generalized by modifying the probabil-
ity of an agent to choose the same restaurant as the previous evening as pi(t) =
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Fig. 12.3 The figure shows
the average utilization
fraction (f̄ ) for different
values of ξ . All simulation
data are shown for N = 104

and n = 104

1/n
ξ
i (t − 1) where ξ is positive real number. Of course ξ = 1 is the case discussed

in the previous section. It is observed (numerically) that the utilization fraction
increases with decreasing ξ . However, the time to reach steady state value also
increases. So, in this method we can reach a better utilization fraction as ξ → 0
(Fig. 12.3). We observe, trivially, that the ξ = 0 case does not have any dynamics.
On the other hand, the utilization fraction decreases to a limiting value (f̄ � 0.676)
for ξ → ∞. The details of the critical behavior of this model will be reported else-
where [6].

12.3 KPR and Phase Transition

Recently Ghosh et al. applied a stochastic crowd avoiding strategy in the KPR prob-
lem with considering gN agents and N number of restaurants [7]. It was observed
that if the stochastic crowd avoiding strategy is applied to the problem then one can
find out a particular value of g = gc below which all the agents are satisfied (and the
state is called an absorbing or frozen state) and above the value of gc, some of the
agents will not be satisfied (and the state is called an active state). Therefore there is
a phase transition between the an absorbing state and an active state with variation
of g. The exponents of the transition in this process is well fitted with stochastic
sandpile model.

12.3.1 The Models

Consider gN (g < 1) agents and the N restaurants. It is reminded that a restaurant
can serve only one agent in an evening. Suppose in any evening a particular restau-
rant (ith restaurant) is visited by ni agents and then one of the agents is chosen
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randomly and is served and rest (ni − 1) agents do not get any dinner for that day.
Suppose all the agents are following the stochastic crowd avoiding dynamics men-
tioned before. Here two cases of the model are discussed (Model A & Model B). In
model A, if any (ith) restaurant is visited by ni agents in any evening then in the
next evening each of the ni agents will independently choose the same restaurant
with probability p = 1/ni or a different restaurant otherwise with uniform prob-
ability. But in model B, if any (ith) restaurant is visited by ni (ni > 1) agents in
any evening then in the next evening all agents will independently choose any of
the restaurants with uniformly probability (p = 1/N ). If, however, ni = 1 then the
agent will stick to his/her choice in the next evening. In both the models, one can
find a value of g = gc below which all the agents will be getting food and when
g > gc , some of agents will not be satisfied. The order parameter is given by the
steady state density of active sites ρa (density of sites having n > 1). So the absorb-
ing phase corresponds to ρa = 0 (g < gc) whereas, for g > gc the steady state gives
a non-zero value of the order parameter (ρa > 0). Here the lattice versions (1D &
2D) models are also discussed.

12.3.2 Numerical Results

In this model one can see that below gc the order parameter ρa goes to zero with
time and above gc, ρa goes to a stationary non zero value with time. Now, it is known
that the evolution of order parameter is an exponential form and can be expressed as

ρa(t) = ρ0
a

[
1 − e−t/τ

]
(12.8)

for g > gc , and

ρa(t) = ρ0
ae−t/τ (12.9)

for g < gc , where τ in the above expressions represents the relaxation time in the
system. Therefore, the order parameter asymptotically goes to steady state value
with time. Now, near critical point the order parameter can be scaled as ρa ∼ (g −
gc)

β where β is the order parameter exponent, similarly τ also scales as τ ∼ (g −
gc)

−ν . A scaling form for ρa can be written as

ρa ∼ t−αF

(
t

τ

)
; τ ∼ (g − gc)

−ν ∼ Lz, (12.10)

where L denotes size of the system and α, z are dynamic exponents near critical
point. For time t → ∞, and using (12.8), (12.9) and (12.10) we get a scaling relation
β = να. The exponents have been obtained by numerical simulations and the scaling
relations are also discussed.
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12.3.3 Model A

12.3.3.1 Mean Field Case

The model in its original form (as discussed so far) is mean-field (i.e. infinite range)
type, in the sense that the excess agents from a restaurant can choose from all the
remaining restaurant in the next evening and the geometrical distance was not an
issue. In the mean filed case, the simulations are done by taking system size L = 106

and different scaling exponents are estimated (see Fig. 12.4). The simulation results
suggest that gc = 0.7502 ± 0.002 and β = 0.98 ± 0.02. Also doing the data collapse
it has been shown z = 0.50±0.01, ν = 1.00±0.01 and α = 1.00±0.01. Therefore,
the scaling relation β = να is satisfied by the estimated exponents for this case.

12.3.3.2 Lattice Cases

This model was also studied for 1-d and 2-d lattices. In 1-d, by studying the dy-
namics in the lattice it is meant that the excess agents can only go to the nearest
neighbor sites in the next step. For 1-d, lattice size N = L = 104 have been taken
and averaging over 103 initial conditions were permormed. For 2-d, a square lattice
(N = L2) with L = 1000 and averaging over 103 initial conditions were considered.
Periodic boundary condition have been employed in both cases.

1. The model is defined for 1-d as follows: The agents are allowed to hop only to
their nearest neighbor restaurants, and each agent can choose either left or right
neighbor randomly. It is found that gc = 1 and hence the phase transition is not
very interesting.

2. In the 2-d version of the model, a square lattice is considered and the agents
are to choose one of the 4 nearest neighbors randomly in next evening. For
N = 1000 × 1000, gc = 0.88 ± 0.01, β = 0.68 ± 0.01, z = 1.65 ± 0.02,
ν = 1.24 ± 0.01 and α = 0.42 ± 0.01. It was observed that these indepen-
dently estimated exponent values do not fit with the scaling relation β = να.
However, this type of scaling violation was also observed previously in many
active-absorbing transition cases [8].

12.3.4 Model B

12.3.4.1 Mean Field Case

For the mean field case, N = 106, averaging over 103 initial condition were taken.
The phase diagram and the universality classes of the transition has been numer-
ically investigated. In the mean field case, the phase boundary seems to be linear
starting gc = 1/2 for p = 0 and ending at gc = 1 for p = 1 (Fig. 12.5), obeying
gc = 1

2 (1 + p). In this case, for p = 0, gc = 1/2, and this is similar to the fixed
energy sandpiles [9–11]. Again the critical exponents are the same along the phase
boundary and they match with those of model A.
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Fig. 12.4 Simulation results
for mean field case,
gc = 0.7502 ± 0.0002.
(a) Variation of steady state
density ρa of active sites
versus g − gc , fitting to
β = 0.98 ± 0.02. The inset
shows the variation of ρa

with density g. (b) Relaxation
to absorbing state near critical
point for different system
sizes, the inset showing the
scaling collapse giving
estimates of critical
exponents α = 1.00 ± 0.01
and z = 0.50 ± 0.01. (c)
Scaling collapse of ρa(t). The
inset shows the variation of
ρa(t) versus time t for
different densities g. The
estimated critical exponent is
ν = 1.00 ± 0.01. The system
sizes N are mentioned.
From [7]

12.3.4.2 Lattice Cases

This model was also studied for 1-d and 2-d lattices. For a linear chain in 1-d, N =
L = 104 and average over 103 initial condition were considered. For 2-d, square
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Fig. 12.5 Phase diagram for
the generalized model in the
(g,p) plane, showing the
phase boundaries separating
the active and absorbing
phases in 1-d, 2-d and mean
field cases. The active phases
are on the right of the phase
boundaries while the
absorbing phases are on the
left in the respective cases.
The system sizes are N = 105

for mean field, 1000 × 1000
for 2-d, and 104 for 1-d.
From [7]

restaurants (lattice) with L = 1000 and averaging over 103 initial conditions were
considered.

1. For 1-d, for the case p = 0, gc = 0.89 ± 0.01, with β = 0.42 ± 0.01, z =
1.55 ± 0.02, ν = 1.90 ± 0.02 and α = 0.16 ± 0.01. The phase boundary in
(g,p) is nonlinear: it starts from gc = 0.89 ± 0.01 at p = 0 to p = 0.43 ± 0.03
at g = 1 (Fig. 12.5). Thus, one can independently define a model at unit density
(g = 1) and calculate the critical probability pc for which the system goes from
an active to an absorbing phase.

2. For 2-d, for the case p = 0, gc = 0.683 ± 0.002, with β = 0.67 ± 0.02, z =
1.55 ± 0.02, ν = 1.20 ± 0.03 and α = 0.42 ± 0.01. The phase boundary seems
nonlinear, from gc = 0.683 ± 0.002 for p = 0 (Fig. 12.5) extending to gc = 1 at
p = 1.

In summary, it is shown how a crowd dynamics in a resources allocation game
gives rise to a phase transition between an active and a frozen phase, as the den-
sity varies. In this respect, a class of models has been defined and studied, where
gN agents compete among themselves to get the best service from N restaurants
of same rank, generalizing the ‘Kolkata Paise Restaurant’ problem. In the original
problem, where density g = 1, the model was far from its critical value gc, the relax-
ation time τ , given by (12.10) never showed any L = N1/d dependence. As long as
g ≤ gc , absorbing frozen configurations are present, and whether that can be reach-
able or not, depends on the underlying dynamics. The existence of a critical point
gc above which the agents are unable to find frozen configurations was found. In the
case in which the agents are moving if and only if they are unsatisfied (model B) with
p = 0, they fail to reach satisfactory configurations if the density is above gc = 1/2.
Strategies where agents wait longer (higher p) speed up the convergence, increas-
ing gc and decreasing the time to reach saturation configurations (faster-is-slower
effect). The exponent values of the phase transitions in finite dimensions are in good
agreement with the exponents of stochastic fixed-energy sandpile (Table. 12.1) [9–
13]. Thus, it is a simple model for resource allocation, which is solvable (the MF
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Table 12.1 The table shows
that comparison of the critical
exponents of this model with
those of the conserved Manna
model [13]

Model A Model B Manna

β 1D 0.42 ± 0.01 0.382 ± 0.019

2D 0.68 ± 0.01 0.67 ± 0.02 0.639 ± 0.009

MF 0.98 ± 0.02 0.99 ± 0.01 1

z 1D 1.55 ± 0.02 1.393 ± 0.037

2D 1.65 ± 0.02 1.55 ± 0.02 1.533 ± 0.024

MF 0.50 ± 0.01 0.50 ± 0.01 2

α 1D 0.16 ± 0.01 0.141 ± 0.024

2D 0.42 ± 0.01 0.42 ± 0.01 0.419± 0.015

MF 1.00 ± 0.01 1.00 ± 0.01 1

ν 1D 1.90 ± 0.02 1.876 ± 0.135

2D 1.24 ± 0.01 1.20 ± 0.03 1.225 ± 0.029

MF 1.00 ± 0.01 1.00 ± 0.01 1

limit), and shows a variety of interesting features including phase transitions as in
well known models.

12.4 KPR and Its Application on MG

So far we have dealt with the cases where the number of choices and the num-
ber of agents making those choices are of comparable magnitudes (KPR problem).
However, there is another very well studied limit where the number of agents re-
main large but the number of choices is only two. A pay-off is given to the agents
belonging to the minority group. Given there is no dictator and the agents do not
communicate among themselves, how to device a strategy to extract maximum gain
for maximum number of people, has been a long standing question. This problem
goes by the name Minority Game (MG). This is, in fact, a particular version of the
El Farol bar problem introduced by Brian Arthur [14].

In MG, the total number of agents (N ) being odd, the maximum possible utiliza-
tion can come when (N − 1)/2 agents are in the minority. However, if the agents
choose randomly, the utilization is far from the maximum value, in fact the devia-
tion is of the order of

√
N . However, there can be deterministic strategies, where

agents learn from their past experiences and in those cases this fluctuation can be
considerably reduced, giving a self-organized, efficient market [15–20]. But in all
those cases, the fluctuations (deviation from maximum utilization) scales with sys-
tem size as

√
N . Only the pre-factor, depending upon the particulars of the strategy,

can be reduced.
Recently, Dhar et al. [21] applied a stochastic strategy, inspired by the stochastic

strategy used in KPR [2, 4, 5], to show that the fluctuations, or deviation from max-
imum utilization, can be reduced to be of the order of Nε for any ε > 0 in log logN
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time. Stochastic strategy was used in MG before [22], where the fluctuation could
be made of the order 1, but the time to reach that state scaled with

√
N . The strategy

taken by Dhar et al., is the first of its kind that gives smallest fluctuation in very
short time. In the following sections we discuss the main results of this strategy and
its subsequent modifications.

12.5 KPR Strategy in MG: Results

As mentioned before, Minority Game deals with N (odd) agents selecting between
two choices, when an incentive is associated with people belonging to minority. For
example, consider the situation where there are only two restaurants in a locality
and N = 2M + 1 agents select between these two restaurants for dinner. An agent
is happy if he or she goes to the less crowded restaurant. But they cannot communi-
cate among themselves and cannot change their choices once they fix it for a given
evening. The agents, however, have in their possession the entire history of which
restaurant was more crowded. This is a classic example to the MG problem. Other
examples can be buying or selling of stocks and so on.

For any configuration at time (day) t , one can write the populations in the two
restaurants as, M − Δ(t) and M + Δ(t) + 1. In the this strategy, a deviation from
the classic MG problem was made that the knowledge of Δ(t) was also available to
the agents, while originally only its sign was known. In that sense, agents have more
information than usual.

The strategy of the agents is as follows: At t = 0 the agents select randomly.
Then the agents belonging to the minority stick to their choice in the next day. But
the agents in the majority change their choice with a probability

p = Δ(t)

(M + Δ(t) + 1)
(12.11)

for Δ(t) > 0 and stick to their choice with probability 1 − p. As it is a probabilis-
tic strategy, the number of people shifting will also have a fluctuation of the order√

Δ(t), which is the new difference between the two populations; which leads us
to the recurrence relation Δ(t + 1) = √

Δ(t). This shows that after log logN time
Δ(t) becomes of the order 1 and remains there.

Therefore, by following the same stochastic strategy, the difference between the
populations in the two restaurants can be minimized in a very short time. This is in
contrast with standard MG strategies, where the agents indeed try to differ in their
strategies to maximize individual gain. However, the difference being in general the
strategies were deterministic, i.e. given a history, all the subsequent steps are known.
The stochasticity itself makes the agents differ. Furthermore, that the agents follow
the same stochastic strategy and do not deviate from it, can be justified if it can be
shown that a single individual does not gain by deviating from this strategy. Indeed
it was shown that for this strategy, an individual will not gain by deviating from this
strategy.
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12.5.1 Stability Against Individual Deviator

In the above discussions it is discussed that if the agents in the MG problem follow
a simple stochastic strategy, the difference between the two choices can be made of
the order 1 in log logN time. However, it is not always expected that all the agents
will follow the same strategy, until it is shown that no one will gain by deviating
from the strategy.

12.5.1.1 Game with One Cheater

Defining cheater as one who will not follow the strategy followed by rest present in
the majority. Now suppose there is a cheater, say X1 in the majority, say in restau-
rant A. If he want to stay, then the number of agents in the restaurant A, who will
follow the conventional strategy is M + Δ(t). The probability that r̃ agents from
M + Δ(t) agents in A will shift from A to minority, say restaurant B is

P(r̃) =
(

M + Δ(t)

r̃

)
pr̃(1 − p)M+Δ(t)−r̃ . (12.12)

For M → ∞ the probability distribution will become Poisson with λ = p(M + 1).
So this distribution will be

P(r) = λr

r! exp(−λ)(1 + Br), (12.13)

where

B = λ

M
−

(
λ3

2
+ λ2Δ − λ2

2

)
1

M2
. (12.14)

Using the above probability distribution, it can be shown that [21] there exist a value
of λ for a given Δ(t) such that existence of cheater does not effect the dynamics of
the game. This λ is given by

λ − Δ = 1

6
+ λ2

2M

√
λ

Δ

(
1 + Δ

λ

)
. (12.15)

Or restoring the inequality given that X1 will gain switching as he is in majority
then we get

λ < Δ + 1

6
+ λ2

2M

√
λ

Δ

(
1 + Δ

λ

)
. (12.16)

As λ ∝ Δ, this means for a large difference Δ we can increase the noise safely up
to 1

6+ without letting the cheater to win. We have seen in Fig. 12.6 that (12.15)
match the simulation result. In the simulation we took p = Δ+c

M+Δ+1 , with vary-
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Fig. 12.6 The data points are
the simulation data and the
line is (12.15). The total
number of player is 2001

ing the noise parameter c. Below this optimal value of λ, cheater will gain if
he shift from majority to minority, above this optimal value a cheater will gain if he
shift from minority to majority.

12.5.1.2 Majority Stay or Minority Flip

For a situation when one agent will stay if he finds himself in majority (in A) and
will shift if he finds himself in minority (in B). Then he will win by staying in
majority if r number of agent shift from majority A to minority B, given r ≥ Δ+ 1.
The total probability P(win | stay in majority) that he will win, which is same as
expected payoff is

EP(majority | stay) =
∞∑

r=Δ+1

P(r). (12.17)

Now, if he is in B having total number of agent M − Δ and shift to A having total
number of agent M +Δ+1, he will win if r number of agent come from A to B, with
r ≥ Δ + 2. The total probability of his win if he flip is P(win |flip from minority),
which is same as his payoff given by

EP(minority |flip) =
∞∑

r=Δ+2

P(r) (12.18)

where P(r) is given by (12.13). Total probability of win or expected payoff, if he
stay at majority and flip if he is in minority is sum of (12.18) and (12.17), which
after little algebra is given by

EPI = 2

(
1 − Γ (Δ + 1, λ)

Δ!
)

− λΔ+1

(Δ + 1)! (12.19)
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Fig. 12.7 The simulation
data is compared with the
solid line which is (12.19)
with given in (12.21)
neglecting the small
correction term in the bracket,
thus λ = 2c. The total number
of player is 2001

where Γ (s, x) is a incomplete gamma function. To get more accurate result we need
to average the expected payoff (EPI ). From numerical experiment we know that
fluctuation in Δ is very small. So this gives very little error when fitted with the
simulated result. This error can be minimized by little adjustment of the constant
terms. The best fit will come for the first argument Δ+a where a �= 1, but a = 0.65.
and the second argument λ = 2Δ in the Γ (s, x). From Fig. 12.7 we find that the
noise c can not be increased to very large value else a cheater will always gain the
game.

We have seen that if we take Δ = 0 so that λ = c, the noise parameter, then the
curve have same features as the simulated curve, this is due to the fact that Δ does
not become zero in the presence of non zero noise. So we need to know the average
Δ in this case, which is given by

〈Δ〉 = 1

2
λ

(
1 − Γ (Δ0, λ)

(Δ0 − 1)!
)

. (12.20)

This is the average difference if A become minority after a shift of agents. So we
get

λ = 2〈Δ〉
(

1 − Γ (Δ0, λ)

(Δ0 − 1)!
)−1

. (12.21)

12.5.1.3 Minority Stay or Majority Flip

Let the cheater is in A having M +Δ+1 agents who will shift to B there are M −Δ

agents. He will shift to B making nA = M + Δ and nB = M − Δ + 1. Now he will
win if r number of people from A shift to B with r ≤ Δ − 1. Then the probability
that he will win is given by P(win |flip from majority). Now if he is in B, then he
will stay. If r ≤ Δ number of people shift from A to B he will win. The probability
that he will win staying in B is P(win | stay in minority). The total probability of
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Fig. 12.8 The symbols
represent the simulation data
and the line is (12.22) with λ

given in (12.23). In the plot
average Δ is not the noise
parameter c but a little less,
so instead of λ = 2(c + 1),
λ = 2c + 1.85 is plotted in the
theoretical curve. The total
number of player is 2001

winning if he always stays in minority, which is same as expected payoff EII in the
same case

EPII =
Δ−1∑
r=0

P(r) +
Δ∑

r=0

P(r) ≈ 2
Γ (Δ,λ)

(Δ − 1)! + λΔ

Δ! exp(−λ). (12.22)

We have seen that if we take Δ = 0 so that λ = c, the noise parameter, then the
curve have same features as the simulated curve (see Fig. 12.8), this is because Δ

does not become zero in the presence of non zero noise. So we need to know the
average Δ in this case which is

λ = 2
(〈Δ〉 + 1

)
. (12.23)

12.5.2 Freezing of Dynamics and Escape Routes from It

It is clear from the strategy discussed above, that once Δ(t) = 0 i.e., the difference
of population in the two restaurants is 1 (which is the minimum possible value as the
total number is odd), the dynamics stops. This leaves the system highly asymmetric
in the sense that the people in the majority (minority) will remain in the majority
(minority) forever. This situation is of course socially unacceptable, although this is
the most efficient division.

12.5.2.1 Resetting After a Given Time

To resolve this status quo, Dhar et al. [21] suggested that once Δ(t) = 0 a major
reshuffle can take place if all the agents (whether in majority or in minority) shift
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after waiting T time steps. This time period needs to be much smaller than the life-
time of the agents. If an inefficiency parameter is defined as follows

η = lim
N→∞

4

N

〈
(r − N/2)2〉, (12.24)

then for this case this would be

η � K1N
ε−1

T + K2 log logN
(12.25)

where K1, K2 and ε are constant. This means that efficiency increases with T . How-
ever, large T would mean longer wait in the majority. Clearly, other parameters like
overall social welfare and equality needs to be considered here. Also, as indicated in
the Dhar et al. paper, it will be interesting to see what if the agents try to maximize
their pay-offs for next n > 1 days.

12.5.2.2 Continuous Transition of Social Efficiency

In the above method, the system becomes efficient only when the agents act for
overall social welfare or have a long-term gain strategy. Even then, efficiency de-
pends upon time waiting time T , which gives rise to a competition regarding its
magnitude.

Biswas et al. [23] suggested a subsequent modification in the strategy such that
the fluctuation could be reduced to any arbitrarily small value by tuning a parameter.
This, therefore, gives a continuous phase transition and as long as a finite fluctuation
is kept in the system, the frozen condition can be avoided.

The modified strategy is the following: The agents in the majority in a given day
shifts to the other choice with a probability

p+(t) = Δ′(t)
M + Δ′(t) + 1

, (12.26)

(where Δ′(t) = qΔ(t) and q is a constant) and people in the minority stick to their
choices (p− = 0).

Regarding the steady-state behavior, consider the following: Suppose the popu-
lations in the majority and minority are M + Δ(t) and M − Δ(t) respectively, at
time t . Now, if 2Δ(t) number of people can be shifted from majority to minor-
ity, then the population difference will remain same and the same process can be
repeated, sustaining a steady state. Of course, this possibility can only arise when
q > 1. If Δs is the steady state value for fluctuation, then

(M + Δs + 1)
qΔs

M + qΔs + 1
= 2Δs. (12.27)
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Fig. 12.9 Steady state values
of the order parameter Os for
different values of q and x.
The solid lines show the
analytical results for the pure
and annealed disordered
cases. Both match very well
with the simulation points.
Inset shows the log–log plot
near the critical point for the
disordered case, confirming
β = 1.00 ± 0.01. All
simulation data are shown for
M = 105. From [23]

The two solutions of this quadratic equation are

Δs = 0 or
q − 2

q
(M + 1). (12.28)

This means that for q < qc = 2, the system will reach the zero fluctuation state
(although the dynamics of the system will be very much different for q < 1 and
q > 1), and for q > 2 there will remain a residual fluctuation in the system signifying
an active-absorbing type phase transition around q = qc = 2.

Formally, one can define an order parameter like O(t) = Δ(t)/M and in the
steady state the saturation value is Os = 0 when q < 2 and Os = (q − qc)/q for
q > 2 both for M � 1, giving the order parameter exponent β = 1. Figure 12.9
shows the numerical results and its comparison with the above calculations.

Regarding the dynamics of the system in approaching this steady state, assume
that at time t the populations at the two restaurants are NA(t) and NB(t) and
NA(t) > NB(t). Therefore,

Δ(t) = NA(t) − NB(t) − 1

2
. (12.29)

Now, according to the strategy in (12.26), the number of people shifted from choice
A to choice B will be

S(t) = qΔ(t)

M + qΔ(t) + 1

(
M + Δ(t) + 1

)

≈ qΔ(t) (12.30)

up to leading order term, when Δ(t) � M , i.e., when q is close to qc, or in the long
time limit if q < qc and not too close to it. With this transfer amount, in the next
step NA(t + 1) = NA(t) − S(t) and NB(t + 1) = NB(t) + S(t). For q > 1, majority
will become minority, so
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Δ(t + 1) = NB(t + 1) − NA(t + 1) − 1

2
≈ qΔ(t) − Δ(t) − 1. (12.31)

Subtracting Δ(t) from both sides and dividing by M , one arrives at

dO(t)

dt
= −(2 − q)O(t) − 1

M
. (12.32)

The last term can be neglected for large M . The it follows

O(t) = O(0) exp
[−(2 − q)t

]
. (12.33)

So this exponential decay in the region 1 < q < 2 gives a time scale τ ∼ (qc −q)−1,
diverging at the critical point with exponent 1.

In (12.30), if one keeps the second order term, one gets

S(t) ≈ qΔ(t) − 1

M

(
q2Δ2(t) − qΔ2(t)

)
. (12.34)

The time evolution equation becomes

dO(t)

dt
= −(2 − q)O(t) − q(q − 1)O2(t). (12.35)

Now, exactly at the critical point q = 2, the solution is

O(t) = O(0)

2O(0)t + 1
, (12.36)

which, in the long time limit gives O(t) ∼ t−1, giving the critical exponent value
α = 1.

A more general solution of (12.35) can be obtained (for any q) as follow: Con-
sider the auxiliary variable u(t) = |q − 1|t /O(t) and substitute it in (12.35). This
gives after simplifications

u(t + 1) = u(t) + q|q − 1|t . (12.37)

Using this recursion relation, one can write u(t) in a GP series and can perform the
sum to get the following:

O(t) = 1 − |q − 1|
q

1

(
1−|q−1|
qO(0)

+ 1)|q − 1|−t − 1
. (12.38)

Putting q = 2 in the above equation, one gets back (12.36). Also, a time scale is
obtained from the above equation in the form

τ ∼ 1

| ln(|q − 1|)| . (12.39)

As q → qc, the power law divergence (qc − q)−1 is recovered.
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Furthermore, for q < 1 the dynamical equation (12.38) will reduce to

O(t) ∼ O(0)

O(0) + 1
(1 − q)t . (12.40)

12.5.3 Reducing Fluctuation with Less Informed Agents

As is clear from the strategies discussed above, the agents in those versions of the
game, posses more information than the usual minority game problem. Particularly,
the agents are aware of the amount of excess population in the majority, while in the
usual case then only know whether they were in the majority or minority. This extra
information is important. Although it is logical that the would agents eventually
come to know about this excess population, there have been studies to confirm if this
extra information is essential in obtaining the maximum efficient state. It is found
that this information is not essential. The system can indeed reach the maximum
efficient state even when this knowledge is partially or even fully absent.

12.5.3.1 Non-uniform Guessing of the Excess Crowd: Phase Transition

It has been argued in Ref. [23] that in considering less informed agent a natural step
would be the agents with different guessing abilities. This means that although the
agents do not know the exact value of the excess population, they can make a guess
about the value. This acts as an annealed disorder. Formally, the ith agent at time t

makes a guess about Δ(t) which is

Δi(t) = Δ(t)(1 + εi), (12.41)

where εi is an annealed random variable taken from a uniform distribution in the
range [0 : 2x]. This means,

〈
Δi(t)

〉 = Δ(t)
(
1 + 〈εi〉

) = Δ(t)(1 + x), (12.42)

where the angular brackets denote average over disorder. One can generally write

Δ(t + 1) = ∣∣Δ(t) − S(t)
∣∣, (12.43)

where

S(t) =
∣∣∣∣
〈

Δ(t)(1 + ε)

M + Δ(t)(1 + ε)

〉∣∣∣∣. (12.44)

This leads to

O(t + 1) = O(t)

∣∣∣∣
〈

ε

1 + (1 + ε)O(t)

〉∣∣∣∣. (12.45)
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Fig. 12.10 Data collapse for
finding ν in the disordered
case for different x values.
The estimate is
ν = 1.00 ± 0.01. Inset shows
the uncollapsed data. The
straight line at the critical
point gives α = 1.00 ± 0.01.
Simulation data is shown for
M = 106. From [23]

In the steady state O(t + 1) = O(t) = O∗, leading to

(1 − O∗)2xO∗

(1 + O∗)
= ln

[
1 + 2xO∗

1 + O∗

]
. (12.46)

A numerical solution of this self-consistent equation was found to agree with the
simulation results (see Fig. 12.9). For small O∗, O∗ ∼ (x − 1) giving β = 1. Also,
for small O(t), the dynamical equation can be written as

dO(t)

dt
= (x − 1)O(t) − xO2(t). (12.47)

The critical point is at xc = 1. So at the critical point, O(t) ∼ t−1, giving α = 1 and
above the critical point the exponential decay would give a time scale, diverging at
x = xc with an exponent ν = 1.

The above results were also verified using numerical simulations. A finite size
scaling form was considered

O(t) ≈ t−αF
(
t1/ν(q − qc), t

d/z/N
)
, (12.48)

where d is the spatial dimension, which was taken as 4 in this mean-field scenario.
This form suggests that at the critical point the order parameter decays in a power-
law, with exponent α, which was numerically found to be 1.00 ± 0.01 (see inset of
Fig. 12.10). One can also plot (see Fig. 12.10) O(t)tα against t (q − qc)

ν , where
by knowing α, ν can be tuned to get best data collapse, giving ν = 1.00 ± 0.01.
Also, O(t)tα can be plotted against t/Nz/d , where z/d can be obtained from the
data collapse (Fig. 12.11) to be 0.50 ± 0.01. Therefore, it was concluded that the
analytical estimates were verified and the scaling relation α = β/ν was satisfied.

In the above mentioned case, the non-uniform guessing power acts as an annealed
disorder. When this disorder is quenched, the case slightly complicated. It is no
longer possible to tackle analytically as done above. It was seen that the agents with
higher ε are more likely to change side and be in the majority. So, if the average
pay-offs are plotted against ε, a monotonic decay is observed (Fig. 12.12).
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Fig. 12.11 Data collapse for
finding z in the disordered
case for different system sizes
(M = 103,104,105,106) at
x = 1.0. The estimate is
z/d = 0.50 ± 0.01. Inset
shows the uncollapsed data.
The linear part in the inset
confirms α = 1.00 ± 0.01.
From [23]

Fig. 12.12 For quenched εi

the average pay-offs of the
agents are plotted for
different ε values having
different ranges as indicated.
The monotonic decay with
increasing ε clearly indicates
that agents with higher ε are
more likely to be in the
majority. From [23]

12.5.3.2 Following an Annealing Schedule

Usually in minority game, agents do not have any information about the amount
of excess population in the majority. They are only aware whether they are in the
minority or majority. All the strategies mentioned above require this information in
some form (fully or partially). However, it was studied in Ref. [23] that even without
this information, the system can reach the fully efficient state in lnN time.

In this case of least informed agents, the agents assume a simple time evolution
for the excess population. An example can be

ΔT (t) = ΔT (0) exp(−t/τ ), (12.49)

where ΔT (0) is close to
√

M , corresponding to the initial random choice. Assuming
this form, one can plot the actual Δ(t) along with this trial function with time. They
have a simple relation as follows:

2Δ(t) = ΔT (t). (12.50)



196 A. Ghosh et al.

Fig. 12.13 Time variation of the excess population Δ(t) are plotted for different functional forms
of ΔT (t). Left: In log-linear scale the excess population are plotted for exponential decay. Right:
For power law (ΔT (0)/(1+ t)κ decay, with different values of κ). M = 5×103 for the simulations.
From [23]

This implies that even when the agents are completely unaware of the excess popu-
lation, they can reach an efficient state (Δ(t) ∼ 1) in lnN time.

It was also checked in Ref. [23] if this process is specific to the functional form
considered for the trial function. For this purpose a power-law decay was also con-
sidered

ΔT (t) = ΔT (0)

(1 + t)κ
. (12.51)

Again it was found that for different κ values, the relation in (12.50) is satisfied. It
was therefore concluded that this relation is true for a wide range of the functional
form (the restrictions in the functional form is discussed later).

The behavior of the order parameter when a trial function is considered, can be
verified as follows: The dynamical evolution of O(t) would be

O(t + 1) = |η(t) − O(t)|
1 + η(t)

, (12.52)

where η(t) = ΔT (t)/M . When η(t) > O(t), one can obtain (by Taylor series ex-
pansion)

dO(t)

dt
− [

η(t) − 2
]
O(t) = η(t)

[
1 − η(t)

]
. (12.53)

A general solution of the above equation will be of the form

O(t) =
∫ t

0 dt1 η(t1)(1 − η(t1))e
∫ t1

0 (2−η(t2)) dt2

e
∫ t

0 (2−η(t1)) dt1

+ C1e
− ∫ t

0 (2−η(t1)) dt1, (12.54)
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where C1 is a constant. This is valid only when η(t) is not a fast decaying function.
When η(t) < 2, the dominant terms in the above equation is

O(t) ≈ η(t)(1 − η(t))

2 − η(t)
≈ η(t)

2
, (12.55)

which was the numerical observation (see Fig. 12.13). If one evaluates (12.54) using
η(t) = η0 exp(−t/τ ) for τ > 1/2, one gets

O(t) ∼ τ

2τ − 1
η(t). (12.56)

Therefore, O(t) ≈ η(t)/2 is only valid when τ � 1/2, which limits the fastness in
the trial function.

When one considers a fast decaying trail function, one would simply have

O(t) ∼ O(t − 1) − η(t − 1) ∼ O(0) −
t−1∑
k=0

η(k). (12.57)

So, O(t) will saturate to a finite value in this case.

12.5.4 Effect of Random Traders

The above mentioned strategies concern with agents following a given strategy (this
does not remove their heterogeneity, since these are stochastic strategies that involve
uncorrelated random numbers). However, it is often the case in real markets that
there exist agents who do not follow the market signals (fluctuations) in deciding
their trade strategies. Whatever might be their logic, it terms of market signals, they
can be treated as random traders who decide completely randomly as opposed to
the chartists who follow given strategies (deterministic or stochastic). Following
discussions deal with effect of such random traders in minority games.

12.5.4.1 Single Random Trader

Consider the scenario when there is only one random trader in the system. The other
agents follow some strategy mentioned before, and reach the minimum fluctuation
state. After that Δ(t) = 0, so no chartist will shift from his or her choice. How-
ever, the single random trader will continue to shift on average in a 2 days time
period. The majority will be determined by this random trader. Therefore, that ran-
dom trader will always be the loser. Although the resource utilization will be perfect
in this case, it will be at the cost of one player being in the majority for ever.
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Fig. 12.14 The saturation
values of Os are plotted
against q for different
fractions p of the random
traders. M = 106 for the
simulations. From [23]

12.5.4.2 More than One Random Trader

The case of the single random trader has the problem that the random trader is
always a loser. This makes the system unstable in the sense that resource allocation
is unfair for that agent as long as he or she follows that strategy (random in this
case). However, this problem can be avoided by considering more than one random
player. In this case it is not always possible to keep all the random players in the
majority, since the majority is no longer determined by a single random player. Also,
as the average time period is 2 days for the random players, both the choices will
become majority and minority in this time period (due to symmetry of the choices).
It is true that random players would make the fluctuations to grow. If the number
of random player is pN , then the fluctuation would scale as

√
N (see Fig. 12.14).

However, one can always keep the number of random players at a minimum value.
If this number is 2, then the fluctuation would be minimum and uniform resource
allocation is guaranteed.

12.6 Summary

We consider a repetitive game performed by N agents choosing every time (paral-
lelly) one among the n(≤ N) choices, such that each agent can be in minority: no
one else made the same choice in the KPR case (typically n = N ) and Nk < N/2
for the Minority Game (n = 2; k = 1,2). The strategies to achieve this objective
evolve with time bounded by N . Acceptable strategies are which evolve quickly
(say within logN time). Also the effectiveness of a strategy is measured by the re-
sulting utilization factor f̄ giving the (steady state) number of occupied restaurants
in any evening for the KPR, by the value of fluctuation Δ in the minority game case
(Δ = 0 corresponds to maximum efficiency).

The study of the KPR problem shows that a dictated solution leads to one of
the best possible solution to the problem, with each agent getting his dinner at the
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best ranked restaurant with a period of N evenings, and with best possible value
of f̄ (=1) starting from the first evening on itself. For a democratic situation (for
parallel decision strategies), the agents employ stochastic algorithms based on past
occupation informations (e.g., of Nk(t))). These strategies are of course less efficient
(f̄ � 1; the best one discussed in [5], giving f̄ � 0.8 only). Here the time required
is very weakly dependent on N , if any. We also note that most of the “smarter”
strategies lead to much lower efficiency.

Finally we note that the stochastic strategy Minority Game [21], a very effi-
cient one: The strategy is described by (12.11), where the agents very quickly (in
log logN time; N = 2M + 1) get divided almost equally (M and M + 1) between
the two choices. This strategy guarantees that a single cheater, who does not fol-
low this strategy, will always be a loser. However, the dynamics in the system stops
very quickly (leading to the absorbing state), making the resource distribution highly
asymmetric (people in the majority stays there for ever) thereby making this strategy
socially unacceptable. To rectify this, we noted that the presence of a single random
trader (who picks between the two choices completely randomly) will avoid this ab-
sorbing state and the asymmetric distribution. However, this will always make that
random trader a loser. But the presence of more than one random trader will avoid
that situation too, making the average time period of switching between majority
and minority for all the traders (irrespective of whether they are chartists or random
traders) to be 2. Hence, the system will always evolve collectively such that only
two agents will make random choices between the binary choices, while the rest
N − 2 will follow the probabilities given by (12.11).

References

1. Chakrabarti BK, Chakraborti A, Chatterjee A (eds) (2006) Econophysics and sociophysics.
Wiley-VCH, Berlin

2. Chakrabarti AS, Chakrabarti BK, Chatterjee A, Mitra M (2009) Physica A 388:2420
3. Ghosh A, Chakrabarti BK (2009) Kolkata Paise Restaurant (KPR) problem. http://

demonstrations.wolfram.com/KolkataPaiseRestaurantKPRProblem
4. Ghosh A, Chakrabarti AS, Charabarti BK (2010) In: Basu B, Charabarti BK, Ghosh A, Gan-

gopadhyay K (eds) Econophysics and economics of games. Social choices and quantitative
techniques Springer, Milan

5. Ghosh A, Chatterjee A, Mitra M, Chakrabarti BK (2010) New J Phys 12:075033
6. Ghosh A, Chatterjee A, Chakrabarti BK (in preparation)
7. Ghosh A, Martino DD, Chatterjee A, Marsili M, Chakrabarti BK (2012) Phys Rev E

85:021116
8. Rossi M, Pastor-Satorras R, Vespignani A (2000) Phys Rev Lett 85:1803
9. Dickman R, Muñoz MA, Vespignani A, Zapperi S (2000) Braz J Phys 30:27

10. Vespignani A, Dickman R, Muñoz MA, Zapperi S (2000) Phys Rev E 62:4564
11. Dickman R, Alava M, Muñoz MA, Peltola J, Vespignani A, Zapperi S (2001) Phys Rev E

64:056104
12. Manna SS (1991) J Phys A 24:L363
13. Lübeck S (2004) Int J Mod Phys B 18:3977
14. Arthur BW (1994) Am Econ Assoc Pap & Proc 84:406
15. Challet D, Zhang YC (1997) Physica A 246:407

http://demonstrations.wolfram.com/KolkataPaiseRestaurantKPRProblem
http://demonstrations.wolfram.com/KolkataPaiseRestaurantKPRProblem


200 A. Ghosh et al.

16. Challet D, Zhang YC (1998) Physica A 256:514
17. Challet D, Marsili M, Zhang Y-C (2005) Minority games: interacting agents in financial mar-

kets. Oxford University Press, Oxford
18. Moro E (2004) In: Korutcheva E, Cuerno R (eds) Advances in condensed matter and statistical

mechanics. Nova Science Publishers, New York. arXiv:cond-mat/0402651v1
19. De Martino A, Marsili M (2006) J Phys A 39:R465
20. Kets W (2007) Preprint. arXiv:0706.4432v1 [q-fin.GN]
21. Dhar D, Sasidevan V, Chakrabarti BK (2011) Physica A 390:3477
22. Reents G, Metzler R, Kinzel W (2001) Physica A 299:253
23. Biswas S, Ghosh A, Chatterjee A, Naskar T, Chakrabarti BK (2012) Phys Rev E 85:031104
24. Evans MR, Hanney T (2005) J Phys A, Math Gen 38:R195

http://arxiv.org/abs/arXiv:cond-mat/0402651v1
http://arxiv.org/abs/arXiv:0706.4432v1


Chapter 13
Kolkata Paise Restaurant Problem
and the Cyclically Fair Norm

Priyodorshi Banerjee, Manipushpak Mitra, and Conan Mukherjee

Abstract In this paper we revisit the Kolkata Paise Restaurant problem by allowing
for a more general (but common) preference of the n customers defined over the
set of n restaurants. This generalization allows for the possibility that each pure
strategy Nash equilibrium differs from the Pareto efficient allocation. By assuming
that n is small and by allowing for mutual interaction across all customers we design
strategies to sustain cyclically fair norm as a sub-game perfect equilibrium of the
Kolkata Paise Restaurant problem. We have a cyclically fair norm if n strategically
different Pareto efficient strategies are sequentially sustained in a way such that each
customer gets serviced in all the n restaurants exactly once between periods 1 and n

and then again the same process is repeated between periods (n + 1) and 2n and so
on.

13.1 Introduction

The Kolkata Paise Restaurant problem [2, 3, 5–7] is a repeated game with identi-
cal stage (or one-shot) games and with the same set of n customers (or agents or
players). In each stage these n customers have to simultaneously choose between n

restaurants to get served. All the customers have a common and rational preference
ordering over the service of these n restaurants and, to each customer, the least pre-
ferred outcome is not getting the service. Without loss of generality, we assume that
the first restaurant is the most preferred followed by the second restaurant and so on
and that getting served in the last restaurant is preferred to not getting the service.
The price of getting the service from each restaurant is identical. Each restaurant
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can serve only one customer so that if more than one customer arrives at the same
restaurant, the restaurant randomly chooses one customer to serve and the others do
not get the service in that stage. Thus, given the common preferences of the cus-
tomers over the set of restaurants, the stage game of the Kolkata Paise Restaurant
problem is a symmetric one. Moreover, as long as the first restaurant is strictly pre-
ferred to the last restaurant, the stage game of the Kolkata Paise Restaurant problem
is non-trivial. Given the restrictions on the preferences, Pareto efficiency means that
each customer goes to a different restaurant and each restaurant gets exactly one
customer to serve.

In the very first work on the Kolkata Paise Restaurant problem [2], it was as-
sumed that the common preferences of the customers is such that going to any
unoccupied restaurant is strictly preferred to going to any other restaurant where
at least another customer is present. This restriction implied that the set of pure
strategy Nash equilibria of the stage game were all Pareto efficient. Hence there
are exactly n!(= n(n − 1) . . .2.1) pure strategy Nash equilibria of this version of
the stage game of the Kolkata Paise Restaurant problem. If customers are ratio-
nal, n is small and if customers can mutually interact, then, given the fact that the
set of pure strategy Nash equilibrium are also Pareto efficient, one can show that
it is easy to sustain any pure strategy Nash equilibrium of the stage game of the
Kolkata Paise Restaurant problem as a sub-game perfect equilibrium outcome of
the Kolkata Paise Restaurant problem without designing any punishment strategy.
This is because, in this context, unilateral deviation means going to a restaurant
where there is already another customer which is payoff reducing. In this context
it seems quite unfair to sustain exactly one pure strategy Nash equilibrium of the
stage game repeatedly as a sub-game perfect Nash equilibrium of the Kolkata Paise
Restaurant problem. This is because in any pure strategy Nash equilibrium of the
stage game, the customer going to the first restaurant derives a strictly higher pay-
off than the customer going to the last restaurant. Instead it seems more natural to
sustain the cyclically fair norm where n strategically different Pareto efficient allo-
cations are sequentially sustained in a way such that each customer gets serviced
in all the n restaurants exactly once between periods 1 and n and then again the
same process is repeated from the (n+1)th period to period 2n and so on. A variant
of the cyclically fair norm was proposed in [7] under the large player assumption.
However, this type of cyclically fair norm can also be sustained as a sub-game per-
fect Nash equilibrium because unilateral deviation at any stage means going to a
restaurant already occupied by another customer which is always payoff reducing.
Therefore, the existing structure of the Kolkata Paise Restaurant problem is such
that if the number of customers n is small and if the customers can coordinate their
action then the problem becomes uninteresting as there is no need to design pun-
ishment strategies to induce customers to remain in the equilibrium path. Thus it
is natural that the existing literature on Kolkata Paise Restaurant problem [2, 5–7]
deals with situations where n is macroscopically large so that the agents cannot
rely on the other agents’ actions and therefore what matters to each agent is the
past collective configuration of actions and the resulting average utilization of the
restaurants.
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In this paper we revisit the Kolkata Paise Restaurant problem by relaxing the
assumption on preferences that ensures the Pareto efficiency of all the pure strat-
egy Nash equilibria of the stage game. Therefore, we analyze the Kolkata Paise
Restaurant problem by looking at a more general (but common across agents) ratio-
nal preference structure over the restaurants such that the stage game allows for the
possibility of inefficient pure strategy Nash equilibria. In this scenario we assume
that n is small and that customers can take coordinated actions and then analyze the
possibility of sustaining the cyclically fair norm as a sub-game perfect equilibrium
of the Kolkata Paise Restaurant problem. Clearly, in this context, there is a need for
designing punishment schemes in order to sustain the cyclically fair norm as a sub-
game perfect equilibrium since unilateral deviation from the proposed norm can be
payoff enhancing as the configurations under the cyclically fair norm may not be
pure strategy Nash equilibria of the stage game.

13.2 The Stage Game

We start by formally defining and analyzing the stage game associated with the
Kolkata Paise Restaurant (or KPR) problem. Let N = {1, . . . , n} be the finite set of
agents, S = {R1, . . . ,Rn} be the set of restaurants and vector u = (u1, . . . , un) ∈ �n

represent the utility (in terms of money) associated with each restaurant which is
common to all customers or agents. Assume w.l.o.g. that 0 < un ≤ · · · ≤ u2 ≤ u1

with u1 �= un. Formally, the one shot KPR game is G(u) ≡ (N,S,π), where S =
{R1, . . . ,Rn} is the common action space and πi : Sn �→ � is the payoff function
of agent i. For any agent i, si = k ∈ S implies that agent i chooses the strategy of
going to restaurant k. It may so happen that more than one agents goes to the same
restaurant. In that case, service is provided to only one of them and this selection is
completely random. Therefore, for any strategy profile s ∈ Sn, the expected payoff
to agent i, πi(s) = usi

ηi (s)
where ηi(s) = 1+|{j ∈ N : j �= i, si = sj }| is the number of

agents that have selected the same restaurant as agent i. We call a strategy profile s =
(s1, . . . , sn) ∈ Sn Pareto efficient, if the sum of payoffs of the agents is maximized,
that is,

s ∈ arg max
s′∈Sn

∑

i∈N

πi

(
s′).

Given the current setting, a strategy combination leads to Pareto efficiency if and
only if the strategies of the agents are such that they end up in different restaurants,
that is, ∀i, j ∈ N , si �= sj . A strategy combination s∗ = (s∗

1 , . . . , s∗
n) is a pure strat-

egy Nash equilibrium (NE) if no agent i has incentive to deviate from the existing
strategy s∗

i given the strategies s∗−i = (s∗
1 , . . . , s∗

i−1, s
∗
i+1, . . . , s

∗
n) of the other play-

ers, that is, for each agent i ∈ N ,

πi

(
s∗) ≥ πi

(
si , s

∗−i

) ∀si ∈ S.
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Remark 13.1 It was proved in [2] that if u1 < 2un then the set of all pure strategy
Nash equilibria of the one-shot KPR problem coincides with the set of all Pareto
efficient strategies. This result is quite intuitive since the restriction u1 < 2un means
that going to any unoccupied restaurant is strictly preferred to going to any other
restaurant where at least another agent is present. Hence for any agent i ∈ N , given
the strategy of all other agents, it is always optimum for agent i to select the most
preferred unoccupied restaurant. Since the number of restaurant is the same as the
number of agents, it is always possible for agent i to find an unoccupied restaurant.
Hence in any pure strategy Nash equilibrium all agents end up in different restau-
rants which is also a Pareto optimal strategy combination.

Before concluding this section we provide a discussion on symmetric mixed
strategy equilibria in the following remark.

Remark 13.2 (Symmetric mixed strategy equilibria) Let u1 < 2un and let A(S) de-
note the set of all mixed strategies defined over S.1 A symmetric mixed strategy
Nash equilibrium p∗ = (p∗, . . . , p∗

︸ ︷︷ ︸
n

) ∈ A(S)N where p∗ = (p∗
1, . . . , p∗

n) ∈ [0,1]n

with
∑n

i=1 p∗
i = 1 is a solution to the following sets of equation:

For each i ∈ N ,
∑n−1

k=0(1−p∗
i )

k = nc(n)
ui

for some constant c(n) which is positive

real.2

(i) For N = {1,2}, the symmetric mixed strategy Nash equilibrium is p∗ =
(p∗,p∗) where p∗ = (p∗

1 = 2u1−u2
u1+u2

,p∗
2 = 2u2−u1

u1+u2
) and c(2) = 3u1u2

2(u1+u2)
.

(ii) For N = {1,2,3}, there are two symmetric mixed strategy Nash equilibria.
These equilibria are characterized by p∗ = (p∗

1,p∗
2,p∗

3) and c(3) where p∗
i =

3
2 − 1

2

√
12c(3)

ui
− 3 for all i ∈ {1,2,3}, the constant c(3) takes two values given

by c(3) = √
E1E2E3

( 3(E1+E2+E3)±
√

9(E1+E2+E3)
2−20(E2

1+E2
2+E2

3 )

(E2
1+E2

2+E2
3 )

)
and Ei =

ujul for all i �= j �= l �= i. It can be verified that given u3 < 2u1, 9(E1 + E2 +
E3)

2 − 20(E2
1 + E2

2 + E2
3) > 0 and hence c(3) is always positive real.

(iii) In general, for n > 3 such symmetric mixed strategy equilibria always exists
[1]. A general feature of the symmetric mixed strategy equilibria is that 0 <

p∗
n ≤ · · · ≤ p∗

1 < 1 and p∗
1 �= p∗

n.

It is quite clear from Remark 13.2 that working out the mixed strategy equilibria,
in general, is difficult. Therefore, in this paper, we concentrate only on pure strategy
equilibria of the stage game.

1A mixed strategy is a probability distribution defined on the strategy set. Therefore, in the present
context, A(S) is the set of all probability distributions on the set of restaurants S.
2For mixed strategy equilibria the required condition is

∑n−1
r=0

{(
n−1

r

)
(p∗

i )r (1 − p∗
i )n−r−1 ui

r+1

} =
c(n) for all i ∈ N and after simplification we get

∑n−1
k=0(1 − p∗

i )k = nc(n)
ui

for all i ∈ N .
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13.3 The KPR Problem

The KPR problem is an infinitely repeated game where in each stage the same set
of N = {1, . . . , n} agents play the one shot KPR game G(u) defined in the previous
section.3 We represent the KPR problem as G∞(u) = (N, (Σi)i∈N, (Πi)i∈N) where
N is the set of agents and for any agent i, Σi is the set of strategies available to i,
while Πi is the payoff function of i. However, the concepts of strategy and payoff,
have now become more complex, due to this repeated interaction setting.4

Let us start with the concept of strategy in G∞(u). In each period t , the play of
the one-shot KPR game would result in some action profile st = (st

1, . . . , s
t
n) ∈ Sn.

Given any period t , define history ht = (s1, s2, . . . , st−1) as the description of past
play. That is, ht is a sequence of action profiles realized through times 1 to t − 1.
For any t , ht is assumed to be common knowledge. Let Ht denote the set of all
possible histories at time t . Strategy of i in G∞(u), specifies an action, that is, the
restaurant that i goes to, in each period t , for each possible history ht . Therefore,
∀ i ∈ N , ∀ σi ∈ Σi , σi : Ht �→ S.

For each possible sequence of action profiles over time, we get a sequence of
payoffs, for each agent. To calculate the payoff of an agent we define the concept
of the discount factor δ ∈ (0,1). It is presumed that agents are impatient, and hence,
discount future payoffs, so that present discounted value of a dollar to be received
one period later is δ, two periods later is δ2, and so on. In general, any payoff x

to be received τ periods later, is valued at the present period as δτ x. Therefore,
present discounted value of the infinite sequence of payoffs corresponding to any
infinite sequence of action profiles {s1, s2, s3, . . .}, for agent i, is

∑∞
t=1 δt−1πi(s

t ).
We assume that each agent discounts the future payoffs at same rate.5

Remark 13.3 In this remark we provide two interpretations of the discount factor.

(i) The popular interpretation of discount factor δ is that it is the time-value of
money. Suppose a person puts an amount of money x in a bank at the beginning
of present period. If the bank pays interest r per period, upon withdrawal the
person gets x(1 + r) money at the beginning of the next period. Therefore, we
can say that amount x to be received in the beginning of the next period is
worth only 1

1+r
x money in the present period. Setting δ = 1

1+r
we get that; at

present, the next period payoff x is worth δx and the next to next period payoff
x is worth δ2x. Therefore, a sequence of future payoffs {x1, x2, x3, . . .} is worth∑∞

t=1 δt−1xt at present.
(ii) The concept of δ, can also be used to view the infinitely repeated game as a finite

period repeated game that ends after a random number of periods. Suppose that

3An infinitely repeated game like the KPR problem, where the same stage game is played repeat-
edly, is also referred to as a supergame [4].
4The analysis of the concepts of repeated game theory is taken from [8] and [9].
5It can be easily verified that the conclusions of this paper remain qualitatively same if we allow
for unequal discount factors across agents.
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after each period is played, a (possible weighted) coin is flipped to determine
whether the game will end. If the probability that the game ends immediately
is p and then, with probability 1 − p, the game continues for a least one more
period and then the payoff x, to be obtained in the next stage (if it occurs), is
worth only (1−p)x

(1+r)
. Similarly, a payoff x to be received two periods from now

(if both periods are played) is worth only (1−p)2x

(1+r)2 before this stage’s coin flip

occurs. Therefore, the sum x + δx + δ2x + · · · with δ = 1−p
1+r

reflects both the
time value of money and the possibility that the game may end.

For different values of δ, we get different KPR problems G∞
δ (u). Therefore, for

any agent i, payoff function Πi in G∞
δ (u) is a mapping Πi : Σ1 × . . .Σn �→ � such

that for any strategy profile σ = (σ1, . . . , σn), Πi(σ ) = ∑∞
t=1δ

t−1πi(σ
t
1, σ

t
2, . . . , σ

t
n).

A strategy profile σ ∗ = (σ ∗
1 , . . . , σ ∗

n ) is a Nash equilibrium (NE) of G∞
δ (u), if no

agent i finds it profitable to deviate unilaterally from σ ∗, that is for each i ∈ N ,

Πi

(
σ ∗) ≥ Πi

(
σi, σ

∗−i

) ∀σi ∈ Σi.

We focus on a particular strategy profile σ̄ satisfying the following conditions.

(i) Without loss of generality, in period t = 1 each agent i(∈ N) goes to restau-
rant i.

(ii) For any period t > 1, if agent i went to restaurant 1 in the last period t − 1,
then i goes to restaurant n at period t .

(iii) For any period t > 1, if agent i went to restaurant k > 1 in the last period t − 1,
then i goes to restaurant k − 1 at period t .

Note that strategy σ̄ requires that action of any agent i at any period t depend only
on i’s action at period t − 1 and not on other agents’ actions in the past. If all agents
play σ̄ at G∞

δ (u), we get the cyclically fair norm.

Proposition 13.1 If u1 < 2un, then for all δ ∈ (0,1), σ̄ is a Nash equilibrium of
G∞

δ (u).

Proof If u1 < 2un then we know that in any period t , going to any unoccupied
restaurant is strictly preferred to going to any other restaurant where at least another
agent is present. Hence it is always optimum for any agent i ∈ N , in any period t ,
to select the most preferred unoccupied restaurant. Since the number of restaurant
is the same as the number of agents, it is always possible for agent i in any period t

to find an unoccupied restaurant.
Given σ̄ it is clear that any unilateral deviation from σ̄ by any agent i, at any

time t , would lead to i being tied with another agent at some restaurant thereby
ensuring a strict reduction in payoff in that period.

Depending on the deviation strategy σi , in all periods after t , agent i can face a
tie or he may not face a tie. If agent i faces a tie then he is strictly worse off in that
period in comparison to σ̄i and if he does not face a tie then he gets the same payoff
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in that period in comparison to σ̄i . The reason is that given that all other agents
j ∈ N \ {i} are continuing with the strategy σ̄j , in each period after t , for agent i,
there is exactly one restaurant which is not occupied and hence, given the preference
of agent i we get the result. Thus, in either case Πi(σi, σ̄−i ) < Πi(σ̄ ) implying that
σ̄ is a Nash equilibrium of G∞

δ (u). �

Our objective is to sustain σ̄ as a sub-game perfect equilibrium in order to imple-
ment the cyclically fair norm. That is, we need to show that σ̄ constitutes a sub-game
perfect equilibrium of G∞

δ (u). Before defining the sub-game perfect equilibrium we
need to define a sub-game. We call any ‘piece’ of game G∞

δ (u) following any his-
tory ht , at any period t , a subgame of G∞

δ (u). Therefore, a sub-game is that piece
of the game that remains to be played beginning at any point at which the complete
history of the game thus far is common knowledge. The definition of a strategy in
any infinitely repeated game is closely related to the definition of a sub-game. In
particular, an agent’s strategy specifies the actions the agent will take in the first
period of the repeated game and the first stage of each of its sub-game. There are in-
finite number of sub-games of G∞

δ (u). Since G∞
δ (u) is an infinitely repeated game,

each of its sub-games, beginning at period t + 1 of G∞
δ (u) is identical to G∞

δ (u).
Note that the t th period of a repeated game taken in isolation is not a sub-game
of the repeated game. Therefore, a sub-game is a piece of the original game that
not only starts at a point where the history of the game thus far is common knowl-
edge among the agents, but also includes all the moves that follow this point in the
original game. A Nash equilibrium strategy profile σ ∗∗ = (σ ∗∗

1 , . . . , σ ∗∗
n ) is a sub-

game perfect equilibrium if these strategies constitute a Nash equilibrium in every
sub-game.

Corollary 13.1 If u1 < 2un, then for any δ ∈ (0,1), σ̄ is a sub-game perfect equi-
librium of G∞

δ (u).

Proof Given particular property of σ̄ where i’s behavior depends only on his own
past behavior, no deviation by i in any period t (and hence in the sub-game starting
from period t) can induce a change in future actions of other agents in N \ {i}.
Thus, using the arguments from the last paragraph of the proof of Proposition 13.1,
it follows that σ̄ continues to be a Nash equilibrium in every sub-game of G∞

δ (u). �

Remark 13.4 If u1 = 2un then, by making minor alterations in the arguments in
the proofs of Proposition 13.1 and Corollary 13.1, one can implement the cyclically
fair norm as a sub-game perfect equilibrium with the same strategy σ̄ and for any
δ ∈ (0,1). The proof is left to the reader.

Observe that the strategy profile σ̄ , that implements the cyclically fair norm as a
sub-game perfect equilibrium when u1 ≤ 2un, is such that there is no specification
of punishment in the sense that it is silent about what happens if one agent devi-
ates from the existing strategy. However, if u1 > 2un then implementing the cycli-
cally fair norm becomes non-trivial and one has to design appropriate punishment
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Table 13.1 The two-agent
payoff matrix G(u1, u2) R1 R2

R1
(

u1
2 , u1

2

)
(u1, u2)

R2 (u2, u1)
(

u2
2 , u2

2

)

schemes. To see this, consider the simple stage game with n = 2. The two-agent
payoff matrix with 1 as the row player and 2 as the column player is presented in
Table 13.1.

If u1 < 2u2 then there are only two pure strategy Nash equilibria (R1,R2) and
(R2,R1) of the stage game. Even when u1 = 2u2, (R1,R2) and (R2,R1) continue
to be pure strategy Nash equilibria of the stage game. Therefore, the Pareto efficient
strategies where both agents go to different restaurants are pure strategy Nash equi-
libria for u2 ≥ u1

2 . It is this strong result that drives Proposition 13.1 and we can
easily implement the cyclically fair norm. Note that if u2 = u1

2 , then there are three
pure strategy Nash equilibria (R1,R2), (R2,R1) and (R1,R1) of the stage game.
Therefore, for u1 = 2u2, there exists a sub-game prefect equilibrium that leads to
inefficiency in every period. Specifically, the strategy that specifies that each agent
should go to the first restaurant in all periods is a sub-game perfect equilibrium,
where sum of the stage game payoffs of the two agents is u1 which is strictly less
that sum u1 + u2 that results under any Pareto optimal strategy. The problem gets
only worse if 2u2 < u1, because now there is only one pure strategy Nash equi-
librium (R1,R1) of the stage game which is not Pareto efficient. How to design
strategies to implement the cyclically fair norm as a sub-game perfect equilibrium
when n = 2 and 2u2 < u1 is discussed in the next section.

13.4 The Two Agent Problem

In this section we show that for N = {1,2} and for u2 < u1
2 , if agents are sufficiently

patient (that is, if δ is sufficiently high), then, by designing an appropriate strategy
one can implement the cyclically fair norm as a sub-game perfect equilibrium of
G∞

δ (u1, u2). The strategy profile we propose, to implement the cyclically fair norm,
is σ c = (σ c

1 , σ c
2 ), that specifies the following.

(i) Without loss of generality, if t is odd, then agent 1 plays R1 and agent 2 plays
R2.

(ii) If t is even, then agent 2 plays R1 and agent 1 plays R2.
(iii) If in any period t both agents end up in the same restaurant, then from t + 1

onwards both agents play R1.

Strategy profiles of the type σ̄ c above, are called trigger strategies because
agents cooperate until someone fails to cooperate, which triggers a switch to non-
cooperation forever. In other words, each agent is willing to settle for lower payoffs
under the expectation that the other agent would do the same. If some agent breaks
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this cooperative arrangement, the other agent punishes the deal-breaker by playing
certain actions (for all periods in future) that ensure lower present discounted pay-
offs. Thus, a deviation triggers a punishment play by the non-deviating agents. Such
trigger strategies are sub-game perfect only if the punishment play for all future pe-
riods, induced by these strategies, are credible. This credibility, in turn, requires that
the punishment play be the Nash equilibrium of G∞

δ (u1, u2) as a whole.

Proposition 13.2 For all δ ∈ (u1−2u2
u1

,1), the strategy profile σ̄ c = (σ c
1 , σ c

2 ) is a
Nash equilibrium of G∞

δ (u1, u2).

Proof We first assume that agent 1 plays strategy σ̄ c
1 . Given σ̄ c

1 , we show that if
δ ∈ (u1−2u2

u1
,1) then σ̄ c

2 is the best response of agent 2.
It is clear that at any history, if agent 1 decides to play R1 in all future periods,

then, given 2u2 < u1, the best response of agent 2 is to play R1 in all future periods.
Consider the other possibility, that is, agent 1 decides to alternate between restau-

rants 1 and 2 at each odd and even period, respectively. Then it is obvious that the
best response of agent 2 at any even period is to play R1 (since agent 1 is playing
R2 and u1 > u2). However, finding the best response of agent 2, at odd periods
(when agent 1 plays R1), is a little more complicated. If agent 2 chooses R1, then
as per σ̄ c, agent 1 plays R1 at all future periods, giving 2 a present discounted
payoff u1

2 + δ u1
2 + δ2 u1

2 + · · · = u1
2(1−δ)

. Define P to be the present discounted pay-
off that agent 2 gets by making the optimal action choice at any such odd period.
Therefore, if the optimal choice of agent 2 is R1, then P = u1

2(1−δ)
. If the optimal

choice of agent 2 is R2, then in the next period, that is in period t + 1 which is even,
agent 1 plays R2. As mentioned before, the best response of 2 at t + 1 is R1, and
so we have the following: (i) agent 2 gets payoff u1 at t + 1 and (ii) agent 2 faces
the same choice problem in period t + 2 as in period t and, since all sub-games of
G∞

δ (u1, u2) is G∞
δ (u1, u2) itself, agent 2 selects P . Therefore, if R2 has to be the

optimal choice of agent 2 at all odd periods t then agent 2 gets u2 + δu1 + δ2P and
hence, by definition of P and using observations (i) and (ii), it follows that P has
to satisfy the condition that P = max{ u1

2(1−δ)
, u2 + δu1 + δ2P } = u2 + δu1 + δ2P .

If P = u2 + δu1 + δ2P then we get P = u1δ+u2
1−δ2 . Finally, for σ̄ c

2 to be the best re-

sponse it is both necessary and sufficient that u1δ+u2
1−δ2 > u1

2(1−δ)
which holds for all

δ ∈ (u1−2u2
u1

,1). Therefore, at any odd period the best response of agent 2 is R2

implying that for all δ ∈ (u1−2u2
u1

,1), the strategy σ̄ c
2 is the best response of agent 2

when agent 1 plays σ̄ c
1 . Using very similar arguments it is now quite easy to show

that for all δ ∈ (u1−2u2
u1

,1), the strategy σ̄ c
1 is the best response of agent 1 when

agent 2 plays σ̄ c
2 . Hence, σ̄ c = (σ̄ c

1 , σ̄ c
2 ) is a Nash equilibrium of G∞

δ (u1, u2) for all
δ ∈ (u1−2u2

u1
,1). �

Corollary 13.2 For all δ ∈ (u1−2u2
u1

,1), the strategy profile σ̄ c = (σ c
1 , σ c

2 ) is a sub-
game perfect equilibrium of G∞

δ (u1, u2).



210 P. Banerjee et al.

Proof The set of sub-games of G∞
δ (u1, u2) can be partitioned into two classes. One

class following those histories where each agent followed the cyclically fair norm
and alternated between restaurants 1 and 2 in a way such that Pareto efficiency is
achieved in every period. The other class following those histories where there has
been a tie at some restaurant and agents have shifted to (R1,R1) from the next
period onwards. Recall that every sub-game of G∞

δ (u1, u2) is G∞
δ (u1, u2) itself. If

agents adopt strategy σ̄ c for the game as a whole, then they end up playing strategy
σ̄ c in sub-games of the first class and (ii) the punishment play (R1,R1) in each
period of sub-games of the second class. By Proposition 13.2, for sub-games of
the first type, strategies σ̄ c constitute a Nash equilibrium. For sub-games of the
second type, the punishment play of R1 by both agents at all periods constitutes a
Nash equilibrium of G∞

δ (u1, u2) since (R1,R1) is the unique Nash equilibrium of
G(u1, u2) when 2u2 < u1. Hence, the punishment play is always credible and the
result follows. �

From Corollary 13.2 it follows that as long as agents are sufficiently patient, the
strategy profile σ̄ c implements the cyclically fair norm. Therefore, the bound on δ,
obtained in Proposition 13.2 above, signifies the need for sufficiently patient agents
to implement cyclically fair norm that calls for cooperative behavior. If agents feel
the need to obtain high payoffs in the future (or equivalently if δ is high enough) then
they are willing to make a sacrifice by going to the inferior restaurant in alternate
periods in order to maximize long term individual payoff. In the next section we
analyze the KPR problem with three agents. We show how using different strategy
profiles one can implement the cyclically fair norm.

13.5 The Three Agent Problem

We depict the payoff matrices of G(u1, u2, u3) in Tables 13.2, 13.3 and 13.4.
Recall that if the one shot game G(u1, u2, u3) represents the one shot game of the

KPR problem then u1 ≥ u2 ≥ u3 > 0 and u1 �= u3. With different types of additional
conditions on u1, u2 and u3, we identify and discuss the associated set of pure
strategy Nash equilibria in the following cases.

(N1) If u2 < u1
3 then there is a unique pure strategy Nash equilibrium (R1,R1,R1)

of G(u1, u2, u3). This equilibrium is inefficient.
(N2) If u3 < u2 = u1

3 then the four pure strategy Nash equilibria of G(u1, u2, u3)

are (R1,R1,R1), (R1,R1,R2), (R1,R2,R1) and (R2,R1,R1). All these
equilibria are inefficient. The equilibrium (R1,R1,R1) is Pareto dominated
by all the remaining equilibria since the aggregate payoff under (R1,R1,R1)

is u1 which is strictly less than the aggregate payoff (u1 + u2) that results
from each of the remaining equilibria.

(N3) If we have u3 = u2 = u1
3 , then (R1,R1,R3), (R1,R3,R1) and (R3,R1,R1)

are also pure strategy Nash equilibria along with the other equilibria speci-
fied in (N2) and hence we have seven pure strategy Nash equilibria. Again,
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Table 13.2 The payoff
matrix when agent 3 plays R1 G(u1, u2, u3) R1 R2 R3

R1 ( u1
3 , u1

3 , u1
3 ) ( u1

2 , u2,
u1
2 ) ( u1

2 , u3,
u1
2 )

R2 (u2,
u1
2 , u1

2 ) ( u2
2 , u2

2 , u1) (u2, u3, u1)

R3 (u3,
u1
2 , u1

2 ) (u3, u2, u1) (
u3
2 ,

u3
2 , u1)

Table 13.3 The payoff
matrix when agent 3 plays R2 G(u1, u2, u3) R1 R2 R3

R1 ( u1
2 , u1

2 , u2) (u1,
u2
2 , u2

2 ) (u1, u3, u2)

R2 ( u2
2 , u1,

u2
2 ) ( u2

3 , u2
3 , u2

3 ) ( u2
2 , u3,

u2
2 )

R3 (u3, u1, u2) (u3,
u2
2 , u2

2 ) (
u3
2 ,

u3
2 , u2)

Table 13.4 The payoff
matrix when agent 3 plays R3 G(u1, u2, u3) R1 R2 R3

R1 ( u1
2 , u1

2 , u3) (u1, u2, u3) (u1,
u3
2 ,

u3
2 )

R2 (u2, u1, u3) ( u2
2 , u2

2 , u3) (u2,
u3
2 ,

u3
2 )

R3 (
u3
2 , u1,

u3
2 ) (

u3
2 , u2,

u3
2 ) (

u3
3 ,

u3
3 ,

u3
3 )

the equilibrium (R1,R1,R1) is Pareto dominated by the other six non-
comparable equilibria. The equilibria are inefficient.

(N4) If max{u3,
u1
3 } < u2 < u1

2 then the three pure Nash strategy equilibria of the
game G(u1, u2, u3) are (R1,R1,R2), (R1,R2,R1) and (R2,R1,R1). All
these equilibria lead to the same aggregate payoff and hence, are Pareto non-
comparable. The equilibria are inefficient.

(N5) If u3 = u2 < u1
2 then (R1,R1,R3), (R1,R3,R1) and (R3,R1,R1) are also

pure strategy Nash equilibria along with the other equilibria specified in (N4)
and hence we have six pure strategy Nash equilibria of G(u1, u2, u3). The
equilibria are Pareto non-comparable and inefficient.

(N6) If u3 < u1
2 ≤ u2 ≤ u1 then the three pure strategy equilibria of G(u1, u2, u3)

are (R1,R1,R2), (R1,R2,R1) and (R2,R1,R1). All these equilibria are
inefficient and Pareto non-comparable.

(N7) If u1
2 ≤ u3 then we do not identify all possible pure strategy Nash equilibria.

However, what is important is that the Pareto efficient strategies, characterized
by all agents going to different restaurants, are all included in the set of all pure
strategy Nash equilibria.

The equilibria in case (N7) above are uninteresting as implementation of the
cyclically fair norm as a sub-game perfect equilibrium of G∞(u1, u2, u3) is quite
easy (see Corollary 13.1 and Remark 13.4). For cases (N1)–(N3), all agents going to
the best restaurant, that is, the strategy profile (R1,R1,R1) constitutes a pure strat-
egy Nash equilibrium and is Pareto inefficient. Therefore, as in Proposition 13.2 and
Corollary 13.2, for cases (N1)–(N3), we can implement the cyclically fair norm as
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a sub-game perfect equilibrium of G∞
δ (u1, u2, u3) for δ sufficiently close to one. It

can be easily shown that, by designing a strategy profile which is a natural exten-
sion of σ c = (σ c

1 , σ c
2 ) to the three agent case and that specifies that the non-deviating

agents punish the deviating agent by going to the best restaurant for all future pe-
riods, one can implement the cyclically fair norm. For the rest of the cases, that
is, (N4)–(N6), strategy profile (R1,R1,R1) fails to be a pure strategy Nash equi-
librium of the stage game, and so, implementing the cyclically fair norm becomes
more subtle. This is because the threat of punishment embodied in strategy of type
σ c, that is, going to the best restaurant for all future periods, is no longer a credible
one as it is not a Nash equilibrium of the stage game.

In the rest of this section, we focus on the interesting cases (N4), (N5) and
(N6). Since there is no qualitative difference between (N4) and (N5), we analyze
only cases (N4) and (N6) in detail. As long as agents are sufficiently patient, we
can show that for both cases we can implement the cyclically fair norm as a sub-
game perfect equilibrium of the KPR problem G∞

δ (u1, u2, u3). Interesting to note
here is that, for cases (N4) and (N6), the set of pure strategy Nash equilibria is
{(R1,R1,R2), (R1,R2,R1), (R2,R1,R1)}. However, while for (N4), each agent
playing R1 gets more expected payoff than the agent playing R2, for (N6), each
agent playing R1 gets an expected payoff which is no more than the payoff of the
agent playing R2. It is precisely for this difference in payoffs for the same given pure
strategy Nash equilibrium for cases (N4) and (N6) that calls for designing different
punishment strategies to implement the cyclically fair path.

Consider first (N4), that is max{u3,
u1
3 } < u2 < u1

2 . Consider the strategy profile
σa = (σ a

1 , σ a
2 , σ a

3 ) that specifies the following.

(i) Without loss of generality at t = 1, each agent i ∈ {1,2,3} plays Ri.
(ii) If agent i plays R1 in period t − 1, then i plays R3 in period t .

(iii) If agent i plays Rk �= R1 in period t − 1, then i plays R(k − 1) in period t .
(iv) If any agent i violates either of 1, 2 or 3 in some period t then in all future

periods t + 1, t + 2, . . . , all the non-deviating agents (N \ {i}) plays R1.

Conditions (i)–(iii) in the strategy profile σa ensures that agents follow the cycli-
cally fair norm. Condition (iv) is the punishment requirement that specifies that,
if an agent deviates, then the non-deviating agents punish the deviating agent by
playing R1, for all future periods.

Proposition 13.3 If max{u3,
u1
3 } < u2 < u1

2 , then there exists δ̄ ∈ (0,1) such
that for all δ ∈ (δ̄,1), σa = (σ a

1 , σ a
2 , σ a

3 ) is a sub-game perfect equilibrium of
G∞

δ (u1, u2, u3).

Proof Fix agent 2’s strategy at σa
2 and agent 3’s strategy at follows σa

3 . We first show
that, given this specification, σa

1 is the best response for agent 1 provided agent 1
is sufficiently patient. Consider agent 1 at any history and at any time t . Given the
utility restriction max{u3,

u1
3 } < u2 < u1

2 , agent 1 has an incentive to deviate only
if at time t , agent 1 is supposed to play either R3 or R2 (otherwise agent 1 has no
profitable deviation in the stage game at t when the strategy prescribes R1). Also,
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the best deviation for agent 1 is to play R1 and get a payoff of u1
2 . If agent 1 deviates,

then, following the strategy profile σa , agents 2 and 3 play R1 for all future periods.
At each of such future periods, the best response of agent 1 is to play R2. Therefore,
the present discounted payoff of agent 1 from deviation is

D1(δ) = u1

2
+ (

δu2 + δ2u2 + · · · ) = u1(1 − δ) + 2δu2

2(1 − δ)
. (13.1)

By not deviating in a period t where agent 1 had to play R2 (under conditions (i)–
(iii)), agent 1’s present discounted value of payoff from period t onwards is

E2(δ) = (
u2 + δu1 + δ2u3

) + (
δ3u2 + δ4u1 + δ5u3

) + · · · = u2 + δu1 + δ2u3

(1 − δ3)
.

(13.2)
Similarly, by not deviating in a period t ′ where agent 1 had to play R3, agent 1’s
present discounted value of payoff from period t ′ onwards is

E3(δ) = (
u3 + δu2 + δ2u1

) + (
δ3u3 + δ4u2 + δ5u1

) + · · · = u3 + δu2 + δ2u1

(1 − δ3)
.

(13.3)
A sufficient condition for σa

1 to be a best response for agent 1 (given the strategies
σa

2 and σa
3 of agents 2 and 3 respectively) is that min{E2(δ),E3(δ)} > D1(δ). Note

that min{E2(δ),E3(δ)} = E3(δ) since E2(δ)−E3(δ) = (u2−u3)(1−δ2)+(u1−u2)δ(1−δ)

(1−δ3)
>

0. Therefore, for any δ ∈ (0,1) such that E3(δ)−D1(δ) > 0, σa
1 is the best response

for agent 1. Observe that E3(δ) − D1(δ) = F(δ)

2(1−δ3)
where F(δ) = 2(u3 + δu2 +

δ2u1) − (u1(1 − δ) + 2δu2)(1 + δ + δ2). Note that F(δ) is continuous in δ and,
given (N4), F(0) = 2u3 − u1 < 0 and F(1) = 4(u1

2 + u3
2 − u2) > 0. Hence, there

exists a δ̄ ∈ (0,1) such that for all δ ∈ (δ̄,1), F(δ) > 0 and σa
1 is the best response

for agent 1. Using similar arguments it is easy to show that σa
2 is the best response

for agent 2 against σa
1 and σa

3 and σa
3 is the best response for agent 3 against σa

1 and
σa

2 . Hence σa is a Nash equilibrium of G∞
δ (u1, u2, u3) for all δ ∈ (δ̄,1). Finally,

since the punishment play induced by σa is either of the three pure strategy Nash
equilibria (R1,R2,R1), (R2,R1,R1) and (R1,R1,R2); it is credible. Hence, for
all δ ∈ (δ̄,1), the strategy profile σa = (σ a

1 , σ a
2 , σ a

3 ) is also a sub-game perfect equi-
librium. �

To implement the cyclically fair norm for the KPR problem for the case (N6),
that is for the stage game G(u1, u2, u3) satisfying u3 < u1

2 ≤ u2 ≤ u1, we consider
the strategy profile σb = (σ b

1 , σ b
2 , σ b

3 ) that specifies the following conditions.

(i) Without loss of generality at t = 1, each agent i ∈ {1,2,3} plays Ri.
(ii) If agent i plays R1 in period t − 1, then i plays R3 in period t .

(iii) If agent i plays Rk �= R1 in period t − 1, then i plays R(k − 1) in period t .
(iv) If any agent i violates either of 1, 2 or 3 in some period t , then we have the

following:
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a. If the deviation is initiated by agent 1, then, for all future periods, agent 2
plays R2 and agent 3 plays R1.

b. If the deviation is initiated by agent 2, then, for all future periods, agent 1
plays R1 and agent 3 plays R2.

c. If the deviation is initiated by agent 3, then, for all future periods, agent 1
plays R2 and agent 2 plays R1.

The first three conditions of strategy profile σb are identical to that of the strategy
profile σa since these three conditions are meant to induce cooperative behavior
across agents in order to implement the cyclically fair norm. However, the punish-
ment scheme (that is, condition (iv)) under the strategy profile σb is different and
more subtle compared the punishment scheme under σa . Under σb, the two non-
deviating agents punish the deviating agent by going to two different restaurant by
playing R1 and R2. The best response to this behavior, at any stage game (irre-
spective of the identity of the deviating agent) is to go to R1. Thus, the punishment
scheme generates any one of the three pure strategy Nash equilibria—(R1,R2,R1),
(R2,R1,R1) and (R1,R1,R2); where the deviating agent gets stage game payoff
of u1

2 for all future periods after the deviation period.

Proposition 13.4 If u3 < u1
2 ≤ u2 ≤ u1, then there exists δ∗ ∈ (0,1) such that for all

δ ∈ (δ∗,1), the strategy profile σb = (σ b
1 , σ b

2 , σ b
3 ) is a sub-game perfect equilibrium

of G∞
δ (u1, u2, u3).

Proof We first show that if agent 2 plays σb
2 and agent 3 plays σb

3 then playing σb
1 is

the best response for agent 1. Observe that the most profitable deviation at any time
t available to 1 is to play R1 in that period t where the prescribed strategy under
σb for agent 1 is R3. If agent 1 decides to deviate then, as per σb , for all future
periods, agent 2 plays R2 and agent 3 plays R1. Given this punishment strategy
followed by agents 2 and 3, the best response of agent 1, in all future periods, is
to play R1. Therefore, the resultant punishment play at each period in future is
(R1,R2,R1) with each stage payoff of u1

2 to 1. So, the present discounted value of
the payoff sequence that results after deviation for agent 1 is D2(δ) = u1

2 + δ u1
2 +

δ2 u1
2 + · · · = u1

2(1−δ)
. By not deviating in a period t (where agent 1 had to play R3)

and following σb
1 , agent 1 gets a present discounted value payoff that equals E3(δ) =

(u3 +δu2 +δ2u1)+· · · = u3+δu2+δ2u1
1−δ3 . If for any δ ∈ (0,1), E3(δ)−D2(δ) > 0, then

σb
1 is the best response for agent 1. Observe that E3(δ) − D2(δ) = G(δ)

2(1−δ3)
where

G(δ) = 2(u3 + δu2 + δ2u1)−u1(1 + δ + δ2). Note that G(δ) is continuous in δ and,
given (N6), G(0) = 2u3 − u1 < 0 and G(1) = 2(u2 + u3 − u1

2 ) > 0. Hence, there
exists a δ∗ ∈ (0,1) such that for all δ ∈ (δ∗,1), G(δ) > 0 and σb

1 is the best response
for agent 1. Using similar arguments it is easy to show that σb

2 is the best response
for agent 2 and σb

3 is the best response for agent 3. Hence σb is a Nash equilibrium
of G∞

δ (u1, u2, u3) for all δ ∈ (δ∗,1). Finally, since the punishment play induced by
σb is a pure strategy Nash equilibrium, it is credible. Hence, for all δ ∈ (δ∗,1), the
strategy profile σb = (σ b

1 , σ b
2 , σ b

3 ) is also a sub-game perfect equilibrium. �
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13.6 Summary

Using simple and basic techniques from infinitely repeated games with discounting
we have established how with small number of players one can sustain the cyclically
fair norm as an equilibrium in a KPR problem with general preference structures. In
particular, we have highlighted how to design pure strategies, that at times requires
careful designing of the punishment scheme for perpetrators, to sustain the cycli-
cally fair norm that requires cyclical stage game sacrifices on part of the agents. We
have established the following results.

(i) If for the KPR problem the set of pure strategy Nash equilibria of the stage
game includes the set of all Pareto efficient strategies then there is no need to
design punishment schemes to implement the cyclically fair norm as a sub-
game perfect equilibrium of the KPR problem.

(ii) Sufficiently high patience level of the agents and the design of appropriate pun-
ishment strategies become mandatory when, for the KPR problem with either
two agents or three agents, the set of pure strategy Nash equilibria of the stage
game does not include the set of all Pareto efficient strategies.

(iii) The punishment scheme that works for the two agent case is one where the
deviating agent is punished by shifting to the inefficient Nash equilibrium of the
stage game for all future periods after the deviation. This kind of punishment
is enough to deter a rational agent with sufficiently high patience level from
unilateral deviation.

(iv) For the three agent KPR problem one needs to design different types of pun-
ishment schemes as, depending on the restrictions on the (common) prefer-
ences, we have different sets of pure strategy Nash equilibria of the stage
game. The restrictions on preferences that are of interest are the following—
(a) u1

2 > u2 > u3 and (b) u2 ≥ u1
2 > u3. For both these cases the set of pure

strategy Nash equilibria of the stage game are identical and yet one needs to
design different pure strategies to implement the cyclically fair norm. For both
(a) and (b), the pure strategy Nash equilibrium of the stage game requires two
agents going to the first restaurant and one agent going to the second restaurant.
However, for case (a), the expected payoff associated with going to the first
restaurant is more than the payoff obtained from going to the second restau-
rant, but, for case (b), the expected payoff associated with going to the first
restaurant is weakly less than the payoff obtained from going to the second
restaurant. Therefore, while designing the punishment scheme for the perpe-
trators one needs to incorporate this payoff difference across (a) and (b) and
hence we require two different strategies to implement the same cyclically fair
norm.

We believe that for the KPR problems with more than three agents and general pref-
erence structure, the designing of punishment schemes to implement the cyclically
fair norm is an important issue that needs to be addressed in greater detail.
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Chapter 14
An Introduction to Multi-player, Multi-choice
Quantum Games: Quantum Minority Games
& Kolkata Restaurant Problems

Puya Sharif and Hoshang Heydari

Abstract We give a self contained introduction to a few quantum game protocols,
starting with the quantum version of the two-player two-choice game of Prison-
ers dilemma, followed by an n-player generalization trough the quantum minority
games, and finishing with a contribution towards an n-player m-choice generaliza-
tion with a quantum version of a three-player Kolkata restaurant problem. We have
omitted some technical details accompanying these protocols, and instead laid the
focus on presenting some general aspects of the field as a whole. This review con-
tains an introduction to the formalism of quantum information theory, as well as
to important game theoretical concepts, and is aimed to work as a review suiting
economists and game theorists with limited knowledge of quantum physics as well
as to physicists with limited knowledge of game theory.

14.1 Introduction

Quantum game theory is the natural intersection between three fields. Quantum me-
chanics, information theory and game theory. At the center of this intersection stands
one of the most brilliant minds of the 20th century, John von Neumann. As one of
the early pioneers of quantum theory, he made major contributions to the mathe-
matical foundation of the field, many of them later becoming core concepts in the
merger between quantum theory and information theory, giving birth to quantum
computing and quantum information theory [1], today being two of the most active
fields of research in both theoretic and experimental physics. Among economists
may he be mostly known as the father of modern game theory [2–4], the study
of rational interactions in strategic situations. A field well rooted in the influential
book Theory of Games and Economic Behavior (1944), by Von Neumann and Os-
car Morgenstern. The book offered great advances in the analysis of strategic games
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and in the axiomatization of measurable utility theory, and drew the attention of
economists and other social scientists to these subjects. For the last decade or so
there has been an active interdisciplinary approach aiming to extend game theoret-
ical analysis into the framework of quantum information theory, through the study
of quantum games [5–10]; offering a variety of protocols where use of quantum
peculiarities like entanglement in quantum superpositions, and interference effects
due to quantum operations has shown to lead to advantages compared to strategies
in a classical framework. The first papers appeared in 1999. Meyer showed with a
model of a penny-flip game that a player making a quantum move always comes
out as a winner against a player making a classical move regardless of the classi-
cal players choice [11]. The same year Eisert et al. published a quantum protocol in
which they overcame the dilemma in Prisoners dilemma [12]. In 2003 Benjamin and
Hayden generalized Eisert’s protocol to handle multi-player quantum games and in-
troduced the quantum minority game together with a solution for the four player
case which outperformed the classical randomization strategy [13]. These results
were later generalized to the n-players by Chen et al. in 2004 [14]. Multi-player mi-
nority games has since then been extensively investigated by Flitney et al. [15–17].
An extension to multi-choice games, as the Kolkata restaurant problem was offered
by the authors of this review, in 2011 [18].

14.1.1 Games as Information Processing

Information theory is largely formulated independent of the physical systems that
contains and processes the information. We say that the theory is substrate inde-
pendent. If you read this text on a computer screen, those bits of information now
represented by pixels on your screen has traveled through the web encoded in elec-
tronic pulses through copper wires, as burst of photons trough fiber-optic cables and
for all its worth maybe on a piece of paper attached to the leg of a highly motivated
raven. What matters from an information theoretical perspective is the existence of
a differentiation between some states of affairs. The general convention has been
to keep things simple and the smallest piece of information is as we all know a
bit b ∈ {0,1}, corresponding to a binary choice: true or false, on or off, or sim-
ply zero or one. Any chunk of information can then be encoded in strings of bits:
b = bn−1bn−2 · · ·b0 ∈ {0,1}n. We can further define functions on strings of bits,
f : {0,1}n → {0,1}k and call these functions computations or actions of informa-
tion processing.

In a similar sense games are in their most general form independent of a physi-
cal realization. We can build up a formal structure for some strategic situation and
model cooperative and competitive behavior within some constrained domain with-
out regards to who or what these game playing agents are or what their actions actu-
ally is. No matter if we consider people, animals, cells, multinational companies or
nations, simplified models of their interactions and the accompanied consequences
can be formulated in a general form, within the framework of game theory.
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Lets connect these two concepts with an example. We can create a one to one
correspondence with between the conceptual framework of game theory and the
formal structure of information processing. Let there be n agents faced with a binary
choice of joining one of two teams. Each choice is represented by a binary bit bi ∈
{0,1}. The final outcome of these individual choices is then given by an n-bit output
string b ∈ {0,1}n. We have 2n possible outcomes, and for each agent we have some
preference relation over these outcomes bj . For instance, agent 1 may prefer to have
agent 3 in her team over agent 4, and may prefer any configuration where agent 5
is on the other team over any where they are on the same and so on. For each
agent i, we’ll have a preference relation of the following form, fully determining
their objectives in the given situation:

bx1 � bx2 � · · · � bxm, m = 2n, (14.1)

where bxi
� bxj

means that the agent in question prefers bxi
to bxj

, or is at least
indifferent between the choices. To formalize things further we assign a numerical
value to each outcome bxj

for each agent, calling it the payoff $i (bxj
) to agent i

due to outcome bxj
. This allows us to move from the preference relations in (14.1)

to a sequence of inequalities. bxi
� bxj

⇐⇒ $(bxi
) ≥ $(bxj

). The aforementioned
binary choice situation can now be formulated in terms of functions $i (bxj

) of the
output strings bxj

, where each entry bi in the strings corresponds to the choice of
an agent i.

So far has the discussion only regarded the output string without mentioning any
input. We could without loss of generality define an input as string where all the
entries are initialized as 0’s, and the individual choices being encoded by letting
each participant either leave their bit unchanged or performing a NOT-operation,
where NOT(0) = 1.

More complicated situations with multiple choices could be modeled by letting
each player control more than one bit or letting them manipulate strings of informa-
tion bearing units with more states than two; of which we will see an example of
later.

14.1.2 Quantization of Information

Before moving on to the quantum formalism of operators and quantum states, there
is one intermediate step worth mentioning, the probabilistic bit, which has a certain
probability p of being in one state and a probability of 1 − p of being in the other.
If we represent the two states ‘0’ and ‘1’ of the ordinary bit by the two-dimensional
vectors (1,0)T and (0,1)T , then a probabilistic bit is given by a linear combination
of those basis vectors, with real positive coefficients p0 and p1, where p0 +p1 = 1.
In this formulation, randomization between two different choices in a strategic situ-
ation would translate to manipulating an appropriate probabilistic bit.
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Fig. 14.1 The Bloch sphere.
A geometric representation of
the state space of a single
qubit

The Quantum Bit Taking things a step further, we introduce the quantum bit or
the qubit, which is a representation of a two level quantum state, such as the spin
state of an electron or the polarization of a photon. A qubit lives in a two dimensional
complex space spanned by two basis states denoted |0〉 and |1〉, corresponding to the
two states of the classical bit.

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (14.2)

Unlike the classical bit, the qubit can be in any superposition of |0〉 and |1〉:
|ψ〉 = a0|0〉 + a1|1〉, (14.3)

where a0 and a1 are complex numbers obeying |a0|2 + |a1|2 = 1. |a2
i | is simply

the probability to find the system in the state |i〉, i ∈ {0,1}. Note the difference
between this and the case of the probabilistic bit! We are now dealing with complex
coefficients, which means that if we superpose two qubits, then some coefficients
might be eliminated. This interference is one of many effects without counterpart in
the classical case. The state of an arbitrary qubit can be written in the computational
basis as:

|ψ〉 =
(

a0
a1

)
. (14.4)

The state of a general qubit can be parameterized as:

|ψ〉 = cos

(
ϑ

2

)
|0〉 + eiϕ sin

(
ϑ

2

)
|1〉, (14.5)

where we have factored out and omitted a global phase due to the physical equiv-
alence between the states eiφ |ψ〉 and |ψ〉. This so called state vector describes a
point on a spherical surface with |0〉 and |1〉 at its poles, called the Bloch-sphere,
parameterized by two real numbers θ and ϕ, depicted in Fig. 14.1. A simple com-
parison between the state space of the classical, probabilistic and quantum bit is
shown in Fig. 14.2.
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Fig. 14.2 The classical bit
has only two distinct states,
the probabilistic bit can be in
any normalized convex
combination of those states,
whereas the quantum bit has a
much richer state space

14.1.2.1 Hilbert Spaces and Composite Systems

The state vector of a quantum system is defined in a complex vector space called
Hilbert space H . Quantum states are represented in common Dirac notation as
“ket’s”, written as the right part |ψ〉 of a bracket (“bra-ket”). Algebraically a “ket”
is column vector in our state space. This leaves us to define the set of “bra’s” 〈φ| on
the dual space of H , H �. The dual Hilbert space H � is defined as the set of linear
maps H → C, given by

〈φ| : |ψ〉 
→ 〈φ|ψ〉 ∈C, (14.6)

where 〈φ|ψ〉 is the inner product of the vectors |ψ〉, |φ〉 ∈ H . We can now write
down a more formal definition of a Hilbert space: It is a complex inner product
space with the following properties:

(i) 〈φ|ψ〉 = 〈ψ |φ〉†, where 〈ψ |φ〉† is the complex conjugate of 〈ψ |φ〉.
(ii) The inner product〈φ|ψ〉 is linear in the first argument: 〈aφ1 + bφ2|ψ〉 =

a†〈φ1|ψ〉 + b†〈φ2|ψ〉.
(iii) 〈ψ |ψ〉 ≥ 0.

The space of an n-qubit system is spanned by a basis of 2n orthogonal vectors
|ei〉; one for each possible combination of the basis-states of the individual qubits,
obeying the orthogonality condition:

〈ei |ej 〉 = δij , (14.7)

where δij = 1 for i = j and δij = 0 for i �= j . We say that the Hilbert space of
a composite system is the tensor products of the Hilbert spaces of its parts. So the
space of an n-qubit system is simply the tensor product of the spaces of the n qubits.

HQ = HQn
⊗ HQn−1 ⊗ HQn−2 ⊗ · · · ⊗ HQ1 , (14.8)

where Qi the quantum system i is a vector in C2. A general n-qubit system can
therefore be written

|ψ〉 =
1∑

xn,...,x1=0

axn···x1 |xn · · ·x1〉, (14.9)
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where

|xn · · ·x1〉 = |xn〉 ⊗ |xn−1〉 ⊗ · · · ⊗ |x1〉 ∈ HQ (14.10)

with xi ∈ {0,1} and complex coefficients axi
. For a two qubit system, |x2〉 ⊗ |x1〉 =

|x2〉|x1〉 = |x2x1〉, we have

|ψ〉 =
1∑

x2,x1=0

ax2x1 |x2x1〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉. (14.11)

This state space is therefore spanned by four basis vectors:

|00〉, |01〉, |10〉, |11〉, (14.12)

which are represented by the following 4-dimensional column vectors respectively:

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ . (14.13)

14.1.2.2 Operators

A linear operator on a vector space H is a linear transformation T : H → H , that
maps vectors in H to vectors in the same space H . Quantum states are normalized,
and we wish to keep the normalization; we are therefore interested in transforma-
tions that can be regarded as rotations in H . Such transformations are given by
unitary operators U . An operator U is called unitary if U−1 = U†. They preserve
inner products between vectors, and thereby their norm. A projection operator P is
Hermitian i.e. P = P † and satisfies P 2 = P . We can create a projector P , by taking
the outer product of a vector with itself:

P = |φ〉〈φ|. (14.14)

P is a matrix with every element Pij being the product of the elements i, j of
the vectors in the outer product. This operator projects any vector |γ 〉 onto the 1-
dimensional subspace of H , spanned by |φ〉:

P |γ 〉 = |φ〉〈φ||γ 〉 = 〈φ|γ 〉|φ〉. (14.15)

It simply gives the portion of |γ 〉 along |φ〉.
We will often deal with unitary operators U ∈ SU(2), i.e operators from the spe-

cial unitary group of dimension 2. The group consists of 2×2 unitary matrices with
determinant 1. These matrices will be operating on single qubits (often in systems



14 An Introduction to Multi-player, Multi-choice Quantum Games 223

of 2 or more qubits). The generators of the group are the Pauli spin matrices σx , σy ,
σz, shown together with the identity matrix I :

I =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
.

(14.16)

Note that σx is identical to a classical (bit-flip) ‘NOT’-operation. General 2 × 2
unitary operators can be parameterized with three parameters θ,α,β , as follows:

U(θ,α,β) =
(

eiα cos(θ/2) ieiβ sin(θ/2)

ie−iβ sin(θ/2) e−iα cos(θ/2)

)
. (14.17)

An operation is said to be local if it only affects a part of a composite (multi-
qubit) system. Connecting this to the concept of the bit-strings in the previous sec-
tion; a local operation translates to just controlling one such bit. This is a crucial
point in the case of modeling the effect of individual actions, since each agent in a
strategic situation is naturally constrained to decisions regarding their own choices.
The action of a set of local operations on a composite system is given by the ten-
sor product of the local operators. For a general n-qubit |ψ〉 as given in (14.9) and
(14.10) we get:

Un ⊗ Un−1 ⊗ · · · ⊗ U1|ψ〉 =
1∑

xn,...,x1=0

axn...x1Un|xn〉 ⊗ Un−1|xn−1〉 ⊗ · · · ⊗ U1|x1〉.
(14.18)

14.1.2.3 Mixed States and the Density Operator

We have so far only discussed pure states, but sometimes we encounter quantum
states without a definite state vector |ψ〉, these are called mixed states and consists
of a states that has certain probabilities of being in some number of different pure
states. So for example a state that is in |ψ1〉 = a1

0 |0〉+ a1
1 |1〉 with probability p1 and

in |ψ2〉 = a2
0 |0〉 + a2

1 |1〉 with probability p2 is mixed. We handle mixed states by
defining a density operator ρ, which is a hermitian matrix with unit trace:

ρ =
∑

i

pi |ψi〉〈ψi |, (14.19)

where
∑

i pi = 1. A pure state in this representation is simply a state for which all
probabilities, except one is zero. If we apply a unitary operator U on a pure state, we
end up with U |ψ〉 which has the density operator UρU† = U |ψ〉〈ψ |U†. Regardless
if we are dealing with pure or mixed states, we take the expectation value of upon
measurement ending up in a |φ〉 by calculating Tr(|φ〉〈φ|ρ), where |φ〉〈φ| is a so
called projector. For calculating the expectation values of a state to be in any of a
number of states |φi〉, we construct a projection operator P = ∑

i |φi〉〈φi | and take
the trace over P multiplied by ρ.
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14.1.2.4 Entanglement

Entanglement is the resource our game-playing agents will make use of in the quan-
tum game protocols to achieve better than classical performance. Non-classical cor-
relations are thus introduced, by which the players can synchronize their behavior
without any additional communication. An entangled state is basically a quantum
system that cannot be written as a tensor product of its subsystems, we’ll thus define
two classes of quantum states. Examples below refers to two-qubit states.

Product states:

|ΨQ〉 = |ΨQ2〉 ⊗ |ΨQ1〉, or using density matrix ρQ = ρQ2 ⊗ ρQ1, (14.20)

and entangled states

|ΨQ〉 �= |ΨQ2〉 ⊗ |ΨQ1〉, or using density matrix ρQ �= ρQ2 ⊗ ρQ1 . (14.21)

For a mixed state, the density matrix is defined as mentioned by ρQ =∑N
i=1 pi |ψi〉〈ψi | and it is said to be separable, which we will denote by ρ

sep
Q , if

it can be written as

ρ
sep
Q =

∑
i

pi

(
ρi

Q2
⊗ ρi

Q1

)
,

∑
i

pi = 1. (14.22)

A set of very important two-qubit entangled states are the Bell states

∣∣Φ±
Q

〉 = 1√
2

(|00〉 ± |11〉), ∣∣Ψ ±
Q

〉 = 1√
2

(|01〉 ± |10〉). (14.23)

The GHZ-type-states

|GHZn〉 = 1√
2

(|00 · · ·0〉 + eiφ |11 · · ·1〉) (14.24)

could be seen as an n-qubit generalization of |Φ±
Q〉-states.

14.1.3 Classical Games

It is instructive to review the theory of classical games and some major solution
concepts before moving on to examples of quantum games. We’ll start by defining
classical pure and mixed strategy games, and then move on to introducing some
relevant solution concepts and finish off with a definition of quantum games.

A game is a formal model over the interactions between a number of agents
(agents, players, participants, and decision makers may be used interchangeably)
under some specified sets of choices (choices, strategies, actions and moves, may
be used interchangeably). Each combination of choices made, or strategies chosen
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by the different players leads to an outcome with some certain level of desirability
for each of them. The level of desirability is measured by assigning a real number,
a so called payoff $ for each game outcome for each player. Assuming rational
players, each will choose actions that maximizes their expected payoff E($), i.e.
in an deterministic as well as in an probabilistic setting acting in a way that, based
on the known information about the situation, maximizes the expectation value of
their payoff. The structure of the game is fully specified by the relations between the
different combinations of strategies and the payoffs received by the players. A key
point is the interdependence of the payoffs with the strategies chosen by the other
players. A situation where the payoff of one player is independent of the strategies
of the others would be of little interest from a game theoretical point of view. It is
natural to extend the notion of payoffs to payoff functions whose arguments are the
chosen strategies of all players and ranges are the real valued outputs that assigns a
level of desirability for each player to each outcome.

Pure Strategy Classical Game We have a set of n players {1,2, . . . , n}, n strat-
egy sets Si , one for each player i, with s

j
i ∈ Si , where s

j
i is the j th strategy of

player i. The strategy space S = S1 ×S2 ×· · ·×Sn contains all n-tuples pure strate-
gies, one from each set. The elements σ ∈ S are called strategy profiles, some of
which will earn them the status of being a solution with regards to some solution
concept.

We define a game by its payoff-functions $i , where each is a mapping from the
strategy space S to a real number, the payoff or utility of player i. We have:

$i : S1 × S2 × · · · × Sn → R. (14.25)

Mixed Strategy Classical Game Let Δ(Si) be the set of convex linear combina-
tions of the elements s

j
i ∈ Si . A mixed strategy smix

i ∈ Δ(Si) is then given by:

∑
s
j
i ∈Si

p
j
i s

j
i with

∑
j

p
j
i = 1, (14.26)

where p
j
i is the probability player i assigns to the choice s

j
i . The space of mixed

strategies Δ(S) = Δ(S1)×Δ(S2)×· · ·×Δ(Sn) contains all possible mixed strategy
profiles σmix. We now have:

$i : Δ(S1) × Δ(S2) × · · · × Δ(Sn) → R. (14.27)

Note that the pure strategy games are fully confined within the definition of
mixed strategy games and can be accessed by assigning all strategies except one,
the probability pj = 0. This class of games could be formalized in a framework
using probabilistic information units, such as the probabilistic bit.
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14.1.4 Solution Concepts

We will introduce two of many game theoretical solution concepts. A solution con-
cept is a strategy profile σ ∗ ∈ S, that has some particular properties of strategic
interest. It could be a strategy profile that one would expect a group of rational self-
maximizing agents to arrive at in their attempt to maximize their minimum expected
payoff. Strategy profiles of this form i.e. those that leads to a combination of choices
where each choice is the best possible response to any possible choice made by other
players tend to lead to an equilibrium, and are good predictors of game outcomes in
strategic situations. To see how such equilibria can occur we’ll need to develop the
concept of dominant strategies.

Definition 14.1 (Strategic dominance) A strategy sdom ∈ Si is said to be dominant
for player i, if for any strategy profile σ−i ∈ S/Si , and any other strategy sj �=
sdom ∈ Si :

$i

(
sdom, σ−i

) ≥ $i

(
sj , σ−i

)
for all i = 1,2, . . . , n. (14.28)

Lets look at a simple example. Say that we have two players, Alice with legal
strategies s1

Alice, s2
Alice ∈ SAlice and Bob with s1

Bob, s2
Bob ∈ SBob. Now, if the payoff

Alice receives when playing s1
Alice against any of Bob’s two strategies is higher

than (or at least as high as) what she receives by playing s2
Alice, then s1

Alice is her
dominant strategy. Her payoff can of course vary depending on Bob’s move but
regardless what Bob does, her dominant strategy is the best response. Now there is
no guarantee that such dominant strategy exists in a pure strategy game, and often
must the strategy space be expanded to accommodate for mixed strategies for them
to exist.

If both Alice and Bob has a dominant strategy, then this strategy profile becomes
a Nash Equilibrium, i.e. a combination of strategies for which none of them can gain
by unilaterally deviating from. The Nash equilibrium profile acts as an attractor in
the strategy space and forces the players into it, even though it is not always an
optimal solution. Combinations can exist that can lead to better outcomes for both
(all) players.

Definition 14.2 (Nash equilibrium) Let σNE−i ∈ S/Si be a strategy profile containing
the dominant strategies of every player except player i, and let sNE

i ∈ Si be the

dominant strategy of player i. Then for all s
j
i �= sNE

i ∈ Si :

$i

(
sNE
i , σ NE−i

) ≥ $i

(
s
j
i , σ NE−i

)
for all i = 1,2, . . . , n. (14.29)

If we have a situation where an agent can increase its payoff without decreasing
any others, then this would per definition mean that nobody would mind if that agent
would do so. Each such increase in payoff is called a Pareto improvement. When no
such improvement can be done, then the strategy profile is said to be Pareto optimal.
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Definition 14.3 (Pareto efficiency) A Pareto efficient or Pareto optimal strategy pro-
file is one where none of the participating agents can increase their payoff without
decreasing the payoff of someone else.

14.2 Quantum Games

In the quantum game protocols (protocol and scheme may be used interchange-
ably) presented in this paper, the mi different choices available to a player i will
be encoded in the basis states of an mi -level quantum system, where the mi de-
notes the dimensionality of the Hilbert space HQi

associated with that subsystem.
Each of the n player holds one subsystem leading to a total system with a state
vector a in an

∏n
i=1 dim(HQi

)—dimensional space. The definition of a quantum
game must therefore include a Hilbert space of a multipartite multilevel system
HQ = HQn

⊗ HQn−1 ⊗ · · · ⊗ HQ1 .
The different subsystems must in general be allowed to have a have a common

origin to accommodate entanglement in the shared initial state ρin ∈ HQ . This is
often modeled by including a referee that prepares an initial state and distributes
the subsystems among the players. Whether or not this step invokes on the non-
communication criteria certain games have, is under debate. We justify it by the fact
that no communication is done under the crucial step of choosing a strategy. The
strategies are applied by local quantum operations on the quantum state held by each
player. No player has any access to any part of the system except its own subsystem,
and no information can be sent between the players with aid of the shared quantum
resource. Classical strategies becomes quantum strategies by expanding the strategy
sets:

si ∈ Si ⇒ Ui ∈ S(mi), (14.30)

where the set of allowed quantum operations S(mi) is some subset of the special
unitary group SU(mi). We will later see that the nature of the game can be deter-
mined by restrictions on S(mi). It is an important point to be able to show that the
classical version of a game is recoverable just by restricting the set of allowed op-
erators. At least if we want it to be a proper quantization [9], i.e. an extension of
the classical game into the quantum realm, and not a whole new game without a
classical counterpart.

We define a quantum game in two steps:

Un ⊗ Un−1 ⊗ · · · ⊗ U1 : HQn
⊗ HQn−1 ⊗ · · · ⊗ HQ1

→ HQn
⊗ HQn−1 ⊗ · · · ⊗ HQ1 , (14.31)

$i : HQn
⊗ HQn−1 ⊗ · · · ⊗ HQ1 → R, (14.32)

where the first step is a transformation of the state of the complete system by local
operations, and the second is a mapping from the Hilbert space of the quantum state
to a real number, the expected payoff of player i.
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14.2.1 The Quantum Game Protocol

• The game begins with an entangled initial state |ψin〉. Each subsystem has a di-
mensionality m that equal to the number of pure strategies in each players strategy
set. In the protocols covered in this paper, all players will face the same number
of choices. The number of subsystems equals the number of players. One can
assume that |ψin〉 has been prepared at some location by a referee that then has
distributed the subsystems among the players [12, 13].

• The players then chooses an unitary operator U from a subset of SU(m), and
applies it to their subsystem. The initial state ρin transforms to a final state ρfin,
given by:

ρfin = U ⊗ U ⊗ · · · ⊗ UρinU
† ⊗ U† ⊗ · · · ⊗ U†. (14.33)

In the absence of communication, and due to the symmetry of these games, all
players are expected to do the same operation.

• The players then measures their own subsystem, collapsing their quantum states
to units of classical information. For the case of a two-choice protocol, each
player ends up with a classical bit bi , and the complete system has thus col-
lapsed into a classical string b, corresponding to a pure strategy profile σ ∈ S.
For the quantum game to have an advantage over a classical game, the collective
action of the players must have decreased the probability of the final state ρfin to
collapse into such basis states (classical information strings/strategy profiles) that
are undesired, i.e. leading to lower or zero payoff $.

• To calculate the expected payoffs E($), we define for each player i a payoff-
operator Pi , which contains the sum of orthogonal projectors associated with the
states for which player i receives a payoff $. We have:

Pi =
∑
j

$j
i

∣∣χj
i

〉〈
χ

j
i

∣∣, (14.34)

where the states |χj
i 〉 are those sates that leads to a payoff for player i, and $j

i the
associated payoffs. The expected payoff E($i ) of player i is calculated by taking
the trace of the product of the final state ρfin and the payoff-operator Pi :

Ei($) = Tr(Piρfin). (14.35)

14.2.2 Prisoners Dilemma

The prisoners dilemma is one of the most studied game theoretical problems. It
was introduced in 1950 by Merrill Flood and Melvin Dresher, and has been widely
used ever since to model a variety of situations, including oligopoly pricing, auction
bidding, salesman effort, political bargaining and arms races. In is in its standard
form, a symmetric simultaneous game of complete information. Two players, Alice
and Bob (A and B) are faced with a choice to cooperate or to defect, without any
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Table 14.1 The normal-form
representation of prisoners
dilemma

Bob

Cooperate Defect

Alice
Cooperate (3,3) (0,5)

Defect (5,0) (1,1)

information about the action taken by the other. The payoffs they receive due to
any combination of choices is shown in Table 14.1, where the first entry in each
parenthesis shows the payoff $A of Alice and the second entry the payoff $B of Bob.
Given that Bob chooses to cooperate, Alice receives $A = 3 if she chooses to do the
same, and she receives $A = 5 if she chooses to defect. If Bob instead defects, then
Alice receives $A = 0 by cooperating and $A = 1 by choosing to defect. No matter
what Bob does, Alice will always gain by choosing to defect, equipping her with a
strictly dominant strategy! Due to the symmetry of the game, the same is true for
Bob, forcing them into a Nash equilibrium strategy profile of (defect, defect), which
pays out $AB = 1 to each. This outcome is clearly far from efficient, since there is
a Pareto optimal strategy profile (cooperate, cooperate) that would have given them
$AB = 3, and hence the dilemma.

Quantum prisoners dilemma was introduced by J. Eisert, M. Wilkens, and
M. Lewenstein in 1999 [11]. Here Alice and Bob are equipped with a quantum
resource, a maximally entangled Bell-type-state, and each of them are in posses-
sion of a subsystem. The Hilbert space of the game is given by: H = HB ⊗ HA,
with HA = HB = C2. We’ll identify the following relations, mapping classical
outcomes with basis states of the Hilbert space: (cooperate, cooperate) → |00〉,
(cooperate,defect) → |01〉, (defect, cooperate) → |10〉 and (defect, cooperate) →
|11〉. The entangled initial state is created by acting with an entangling operator
J = 1√

2
I⊗2 + iσ⊗2

x on a product state initialized as (cooperate, cooperate):

J |00〉 = 1√
2

(|00〉 + i|11〉). (14.36)

Note that the entangling operator performs a global operation, i.e. an operation per-
formed on both subsystems simultaneously. One can consider it to be performed by
a referee, loyal to both parties. The game proceeds by Alice and Bob performing
their local strategies UA and UB , and the state is turned into its final form: |ψfin〉 =
(UB ⊗UA)J |00〉. Before measurement is performed, an disentangling operator J † is
applied. The inclusion of J and J † into the protocol assures that the classical game
is embedded into the quantum version, whereby the classical prisoners dilemma can
be accessed by restricting the set of allowed operators to UA, UB ∈ {I, σx}. It is a
simple task to show that any combination of the identity operator I and the bit-flip
operator σx commutes with J , and together with the fact that JJ † = I , one con-
cludes that this restriction turns the protocol into classical (one-bit) operations on a
bit string ‘00’. The complete protocol is shown as a circuit diagram in Fig. 14.3.

It is now left to define a set of operators U , representing allowed quantum strate-
gies, and the payoff operators PA and PB . Eisert et al. considered a two parameter
subset of SU(2) as the strategy space:
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Fig. 14.3 Circuit diagram of
the quantum prisoners
dilemma protocol

U(θ,α) =
(

eiα cos(θ/2) sin(θ/2)

− sin(θ/2) e−iα cos(θ/2)

)
. (14.37)

The classical strategies are represented by U(0,0) = I and U(0,π) = σx . We
construct Alice’s payoff operator PA as defined in (14.34) with values from the
payoff matrix:

PA = 3|00〉〈00| + 5|01〉〈01| + 1|11〉〈11|. (14.38)

Her expected payoff is calculated by taking the trace of the final state and the
payoff operator: E($A) = Tr(PAρfin), where ρfin = |ψfin〉〈ψfin|. It can be shown that
when the set of strategies are expanded to allow any U(θ,α), the old Nash equi-
librium (defect, defect) → U(0,π) ⊗ U(0,π) ceases to exist! Instead a new Nash
equilibrium emerges at

UA = UB = U(0,π/2) =
(

i 0
0 −i

)
. (14.39)

This strategy leads to an expected payoff E($A) = E($A) = 3. Thereby they both
receive an expected payoff that equals the Pareto optimal solution in the classical
pure strategy version, with the addition that this solution is also a Nash equilibrium.
Dilemma resolved. It should be added that if the strategy sets are further expanded
to include all SU(2) operations, this solution vanishes, and there is no Nash equilib-
rium strategy profile in pure quantum strategies, whereby one has to include mixed
quantum operations to find an equilibrium [19].

14.2.3 Minority Games

We extend the previous protocol to ones with multiple agents, by introducing the
minority game. The game consists of n of non-communicating players that must
independently make up their mind between two choices. We could regard these
players as investors on a market deciding between two equally attractive securities,
as commuters choosing between two equally fast routes to a suburb, or any col-
lection of agents facing situations where they wish to make the minority choice.
The core objective of the players are thus to avoid the crowd. We encode the two
choices as |0〉 and |1〉 in the computational basis like before. The players receive
payoff a $ = 1 if they happen to be in the smaller group. So if the number of players
choosing |0〉 is less than the number of players choosing |1〉, the first group receives
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payoff whereas the second group is left with nothing. Would the players happen to
be evenly distributed between the two choices, then they’ll all go empty handed.

The Nash equilibrium solution is to randomize between |0〉 and |1〉 using a fair
coin. The one shoot version we are considering will necessarily have a mixed strat-
egy solution, since any deterministic strategy would lead all players to the same
choice and thus a maximally undesired outcome. The expected payoff E($) for a
player is simply the number outcomes with that player in the minority group di-
vided by the number of different possible outcomes. For a four player game, there
are two minority outcomes for each player, out of sixteen possible. This gives a
expected payoff of 1/8.

A quantum version of a four player minority game was presented by Benjamin
and Hayden in 2000 [13], offering a solution that significantly outperformed the
classical version of the game. The advantage comes from the possibility of elim-
inating (or reducing the probability of) such final outcomes where the players are
evenly distributed among the two choices. The collective application of local uni-
tary operators on the subsystems of an entangled state can thus transform this initial
state in such a way that a better-than-classical result is achieved. This transforma-
tion does not have a classical analogue, and the performance is due to interference
effects from the local phases added to the qubits by the players local operations. We
are not including the action of an entangling operator J in this section, we simply
assume the initial state to be entangled at the start of the protocol, and it can again
be assumed that the state has been prepared by an unbiased referee and distributed
among the players. Considering the four-player case, we begin the protocol with an
GHZ-type state similar to the one used in the previous two-player game, but now
consisting of four entangled qubits.

|ψin〉 = 1√
2

(|0000〉 + |1111〉). (14.40)

The Hilbert space of the game is sixteen dimensional, accounting for all possible
game outcomes. HQ = HQ4 ⊗HQ3 ⊗HQ2 ⊗HQ1 , with HQi

= C2. Each player
i = 1,2,3,4 is permitted to manipulate its subsystem with the full machinery of
local quantum operations: Ui ∈ SU(2) given in (14.17). The payoff operator Pi

projects the final state onto the desired states of player i, and is given by

Pi =
k∑

j=1

∣∣ξj
i

〉〈
ξ

j
i

∣∣. (14.41)

The sum is over all the k different states |ξj
i 〉, for which player i is in the minority.

Its worth to note that the sums are always over a even number k, and that they run
over the states of the following form:

Pi =
k∑

j=1

∣∣ξj
i

〉〈
ξ

j
i

∣∣ =
k/2∑
j=1

∣∣ϑj
i

〉〈
ϑ

j
i

∣∣ +
k/2∑
j=1

∣∣ϑj
i

〉〈
ϑ

j
i

∣∣, (14.42)
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where |ϑj
i 〉 is the bit-flipped version of |ϑj

i 〉, i.e 0’s and 1’s are interchanged. The
payoff operator P1 for player 1 in the four player case is given by:

P1 = |0001〉〈0001| + |1110〉〈1110|. (14.43)

By playing U(θ,α,β) = U(π
2 ,−π

8 , π
8 ), the four players can completely eliminate

the risk of upon measurement ending up with an outcome where none of them re-
ceives a payoff. This quantum strategy leads to an expected payoff E($) = 1

4 that is
twice as good as in the classical case E($) = 1

8 . The strategy profile is a Nash equi-
librium as well as Pareto optimal. Quantum minority games has been extensively
studied for cases of arbitrary n, and it can be shown that the quantum versions gives
rise to better than classical payoffs for any game with an even number of play-
ers [14].

14.2.4 Kolkata Restaurant Problem

The Kolkata restaurant problem is an extension of the minority game [20–24], where
the n players now has m choices. As the story goes, the choice is between m restau-
rants. The players receive a payoff if their choice is not too crowded, i.e the number
of agents that chose the same restaurant is under some limit. We will discuss the
case for which this limit is one. Just like in the minority game previously discussed,
the Kolkata restaurant problem offers a way for modeling heard behavior and mar-
ket dynamics, where visiting a restaurant translates to buying a security, in which
case an agent wishes to be the only bidder. In our simplified model there are just
three agents, Alice, Bob and Charlie. They have three possible choices: security 0,
security 1 and security 2. They receive a payoff $ = 1 if their choice is unique, i.e
that nobody else has made the same choice, otherwise they receive $ = 0. The game
is so called one shoot, which means that it is non-iterative, and the agents have no
information from previous rounds to base their decisions on. Under the constraint
that they cannot communicate, there is nothing left to do other than randomizing
between the choices just like in the minority games in the previous section. Given
the symmetric nature of the problem, any deterministic strategy would lead all three
agents to the same strategy, which in turn would mean that all three would leave
empty handed. There are 27 different strategy profiles possible, i.e combinations of
choices. 12 of which gives a payoff of $ = 1 to each one of them. Randomization
gives therefore agent i an expected payoff of E($) = 4

9 .
In the quantum version we let Alice, Bob and Charlie share a quantum resource

[18]. Each has a part of a multipartite quantum state. They play their strategy by
manipulating their own part of the combined system, before measuring their subsys-
tems and choosing accordingly. Whereas classically the players would be allowed
randomizing over a discrete set of choices, in the quantum version each subsys-
tem is allowed to be transformed with arbitrary local quantum operations, just like
before. In the absence of entanglement, quantum games of this type usually yield
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the same payoffs as their classical counterparts, whereas the combination of unitary
operators (or a subset therein) and entanglement, will be shown to outperform the
classical randomization strategy.

When moving from quantum game protocols with two choices into ones with
three, we’ll need some additional structure. Instead of qubits will we be dealing
with qutrits, which are their three level versions. The local operations on qutrits
are now represented by a more complicated group of matrices, the SU(3) group.
Everything else will essentially be similar to that of the quantum minority game.

A qutrit is a 3-level quantum system on 3-dimensional Hilbert space HQ = C3,
written in the computational basis as:

|ψ〉 = a0|0〉 + a1|1〉 + a2|2〉 ∈ C3, (14.44)

with a0, a1, a2 ∈ C and |a0|2 + |a1|2 + |a2|2 = 1. A general n-qutrit system |Ψ 〉 is
a vector on 3n-dimensional Hilbert space, and is written as a linear combination of
3n orthonormal basis vectors.

|Ψ 〉 =
2∑

xn,...,x1=0

axn...x1 |xn · · ·x1〉, (14.45)

where

|xn · · ·x1〉 = |xn〉 ⊗ |xn−1〉 ⊗ · · · ⊗ |x1〉 ∈ HQ =
n-times︷ ︸︸ ︷

C3 ⊗ · · · ⊗ C3, (14.46)

with xi ∈ {0,1,2} and complex coefficients axi
, obeying

∑ |axn···x1 |2 = 1.
Single qutrits are transformed with unitary operators U ∈ SU(3), i.e operators

from the special unitary group of dimension 3, acting on HQ as U : HQ → HQ .
In a multi-qutrit system, operations on single qutrits are said to be local. They affect
the state-space of the corresponding qutrit only. The SU(3) matrix is parameterized
by defining three general, mutually orthogonal complex unit vectors x̄, ȳ, z̄, such
that x̄ · ȳ = 0 and x̄∗ × ȳ = z̄. We construct a SU(3) matrix by placing x̄, ȳ∗ and z̄

as its columns [25]. Now a general complex unit vector is given by:

x̄ =
⎛
⎝ sin θ cosφeiα1

sin θ sinφeiα2

cos θeiα3

⎞
⎠ , (14.47)

and one complex unit vector orthogonal to x̄ is given by:

ȳ =
⎛
⎝cosχ cos θ cosφei(β1−α1) + sinχ sinφei(β2−α1)

cosχ cos θ sinφei(β1−α2) − sinχ cosφei(β2−α2)

− cosχ sin θei(β1−α3)

⎞
⎠ , (14.48)
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where 0 ≤ φ, θ,χ,≤ π/2 and 0 ≤ α1, α2, α3, β1, β2 ≤ 2π . We have a general SU(3)
matrix U , given by:

U =
⎛
⎝x1 y∗

1 x∗
2y3 − y∗

3x2
x2 y∗

2 x∗
3y1 − y∗

1x3
x3 y∗

3 x∗
1y2 − y∗

2x1

⎞
⎠ , (14.49)

and it is controlled by eight real parameters φ, θ , χ , α1, α2, α3, β1, β2.
The initial state, a maximally entangled GHZ-type state

|ψin〉 = 1√
3

(|000〉 + |111〉 + |222〉) ∈ HQ = C
3 ⊗C

3 ⊗C
3, (14.50)

is symmetric and unbiased in regards to permutation of player position and has the
property of letting us embed the classical version of the game, accessible trough
restrictions on the strategy sets. To show this, we define a set of operators corre-
sponding to classical pure strategies that gives raise to deterministic payoffs when
applied to |ψin〉. The cyclic group of order three, C3, generated by the matrix:

s =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ (14.51)

where s3 = s0 = I and s2 = sT , has the properties we are after. The set of classical
strategies S = {s0, s1, s2} with si ⊗ sj ⊗ sk|000〉 = |ijk〉 acts on the initial state
|ψin〉 as:

si ⊗ sj ⊗ sk 1√
3

(|000〉 + |111〉 + |222〉)

= 1√
3

(|0 + i0 + j0 + k〉 + |1 + i1 + j1 + k〉 + |2 + i2 + j2 + k〉). (14.52)

Note that the superscripts denotes powers of the generator and that the addition is
modulo 3. In the case under study, where there is no preference profile over the
different choices, any combination of the operators in S = {s0, s1, s2} leads to the
same payoffs when applied to |ψin〉 as to |000〉. We form a density matrix ρin out of
the initial state |ψin〉 and add noise that can be controlled by the parameter f [17].
We get:

ρin = f |ψin〉〈ψin| + 1 − f

27
I27, (14.53)

where I27 is the 27 × 27 identity matrix. Alice, Bob and Charlie now applies a
unitary operator U that maximizes their chances of receiving a payoff $ = 1, and
thereby the initial state ρin is transformed into the final state ρfin.

ρfin = U ⊗ U ⊗ UρinU
† ⊗ U† ⊗ U†. (14.54)
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We define for each player i a payoff-operator Pi , which contains the sum of orthog-
onal projectors associated with the states for which player i receives a payoff $ = 1.
For Alice this would correspond to

PA =
(

2∑
x3,x2,x1=0

|x3x2x1〉〈x3x2x1|, x3 �= x2, x3 �= x1, x2 �= x1

)

+
(

2∑
x3,x2,x1=0

|x3x2x1〉〈x3x2x1|, x3 = x2 �= x1

)
. (14.55)

The expected payoff Ei($) of player i is as usual calculated by taking the trace of
the product of the final state ρfin and the payoff-operator Pi :

E($i ) = Tr(Piρfin). (14.56)

It can be shown that if Alice, Bob and Charlie acts with a general SU(3), there exist
a Uopt(φ, θ,χ,α1, α2, α3, β1, β2) ∈ SU(3), given by Uopt(π

4 , cos−1( 1√
3
), π

4 , 5π
18 , 5π

18 ,

5π
18 , π

3 , 11π
6 ), that outperforms classical randomization. The strategy profile Uopt ⊗

Uopt ⊗ Uopt leads to a payoff of E($) = 6
9 , assuming (f = 1), compared to the

classical Ec($) = 4
9 . Letting the payoff function depend on the fidelity parameter

f , we get a payoff function E($(f )) = 2
9 (f + 2) where we can clearly see that the

expected payoff reaches the classical value as f → 0.

14.3 Outlook

As the field of quantum information theory matures and information processing
moves into the quantum realm, will it be increasingly important to study the broad
spectrum of effects of this transition. Game theory is the study of strategic decision
making under limited information. How decision making should or will change as
situations are played out in a world where this information is quantum information,
will be some of many conceptual challenges to address if classical communica-
tion and computing, is due to be replaced by systems governed by the peculiar and
counter-intuitive laws of quantum mechanics.
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